I'm trying to filter through a CSV and make a new CSV which is the exact same except for it gets rid of any rows that have a value of greater than 100 billion in the 'marketcap' column.
The code I've written so just spits out the same CSV as the original out over again and doesn't cut out any lines from the old CSV to the new CSV.
Code:
db = pd.read_csv('SF1_original.csv')
db = db[db['marketcap']<= 100000000000]
db.to_csv('new_SF1_original.csv')
Example of old CSV (It's long don't look through whole thing, just to give you an idea):
ticker,dimension,calendardate,datekey,reportperiod,lastupdated,accoci,assets,assetsavg,assetsc,assetsnc,assetturnover,bvps,capex,cashneq,cashnequsd,cor,consolinc,currentratio,de,debt,debtc,debtnc,debtusd,deferredrev,depamor,deposits,divyield,dps,ebit,ebitda,ebitdamargin,ebitdausd,ebitusd,ebt,eps,epsdil,epsusd,equity,equityavg,equityusd,ev,evebit,evebitda,fcf,fcfps,fxusd,gp,grossmargin,intangibles,intexp,invcap,invcapavg,inventory,investments,investmentsc,investmentsnc,liabilities,liabilitiesc,liabilitiesnc,marketcap,ncf,ncfbus,ncfcommon,ncfdebt,ncfdiv,ncff,ncfi,ncfinv,ncfo,ncfx,netinc,netinccmn,netinccmnusd,netincdis,netincnci,netmargin,opex,opinc,payables,payoutratio,pb,pe,pe1,ppnenet,prefdivis,price,ps,ps1,receivables,retearn,revenue,revenueusd,rnd,roa,roe,roic,ros,sbcomp,sgna,sharefactor,sharesbas,shareswa,shareswadil,sps,tangibles,taxassets,taxexp,taxliabilities,tbvps,workingcapital
A,ARQ,1999-12-31,2000-03-15,2000-01-31,2020-09-01,53000000,7107000000,,4982000000,2125000000,,10.219,-30000000,1368000000,1368000000,1160000000,131000000,2.41,0.584,665000000,111000000,554000000,665000000,281000000,96000000,0,0.0,0.0,202000000,298000000,0.133,298000000,202000000,202000000,0.3,0.3,0.3,4486000000,,4486000000,50960600000,,,354000000,0.806,1.0,1086000000,0.484,0,0,4337000000,,1567000000,42000000,42000000,0,2621000000,2067000000,554000000,51663600000,1368000000,-160000000,2068000000,111000000,0,1192000000,-208000000,-42000000,384000000,0,131000000,131000000,131000000,0,0,0.058,915000000,171000000,635000000,0.0,11.517,,,1408000000,0,114.3,,,1445000000,131000000,2246000000,2246000000,290000000,,,,,0,625000000,1.0,452000000,439000000,440000000,5.116,7107000000,0,71000000,113000000,16.189,2915000000
Example New CSV (Exact same when this line should have been cut):
,ticker,dimension,calendardate,datekey,reportperiod,lastupdated,accoci,assets,assetsavg,assetsc,assetsnc,assetturnover,bvps,capex,cashneq,cashnequsd,cor,consolinc,currentratio,de,debt,debtc,debtnc,debtusd,deferredrev,depamor,deposits,divyield,dps,ebit,ebitda,ebitdamargin,ebitdausd,ebitusd,ebt,eps,epsdil,epsusd,equity,equityavg,equityusd,ev,evebit,evebitda,fcf,fcfps,fxusd,gp,grossmargin,intangibles,intexp,invcap,invcapavg,inventory,investments,investmentsc,investmentsnc,liabilities,liabilitiesc,liabilitiesnc,marketcap,ncf,ncfbus,ncfcommon,ncfdebt,ncfdiv,ncff,ncfi,ncfinv,ncfo,ncfx,netinc,netinccmn,netinccmnusd,netincdis,netincnci,netmargin,opex,opinc,payables,payoutratio,pb,pe,pe1,ppnenet,prefdivis,price,ps,ps1,receivables,retearn,revenue,revenueusd,rnd,roa,roe,roic,ros,sbcomp,sgna,sharefactor,sharesbas,shareswa,shareswadil,sps,tangibles,taxassets,taxexp,taxliabilities,tbvps,workingcapital
0,A,ARQ,1999-12-31,2000-03-15,2000-01-31,2020-09-01,53000000.0,7107000000.0,,4982000000.0,2125000000.0,,10.219,-30000000.0,1368000000.0,1368000000.0,1160000000.0,131000000.0,2.41,0.584,665000000.0,111000000.0,554000000.0,665000000.0,281000000.0,96000000.0,0.0,0.0,0.0,202000000.0,298000000.0,0.133,298000000.0,202000000.0,202000000.0,0.3,0.3,0.3,4486000000.0,,4486000000.0,50960600000.0,,,354000000.0,0.8059999999999999,1.0,1086000000.0,0.484,0.0,0.0,4337000000.0,,1567000000.0,42000000.0,42000000.0,0.0,2621000000.0,2067000000.0,554000000.0,51663600000.0,1368000000.0,-160000000.0,2068000000.0,111000000.0,0.0,1192000000.0,-208000000.0,-42000000.0,384000000.0,0.0,131000000.0,131000000.0,131000000.0,0.0,0.0,0.057999999999999996,915000000.0,171000000.0,635000000.0,0.0,11.517000000000001,,,1408000000.0,0.0,114.3,,,1445000000.0,131000000.0,2246000000.0,2246000000.0,290000000.0,,,,,0.0,625000000.0,1.0,452000000.0,439000000.0,440000000.0,5.1160000000000005,7107000000.0,0.0,71000000.0,113000000.0,16.189,2915000000.0
I've seen two questions somewhat related to this on StackOverflow, but they haven't helped me much. This one uses CSV library instead of pandas (which is an option for me). This one is more helpful since it uses pandas but still hasn't been interacted with and isn't exactly the same as my use case.