I have been trying to improve computation times on a project by splitting the work into tasks/threads and it has not been working out very well. So I decided to make a simple test project to see if I can get it working in a very simple case and this also is not working out as I expected it to.
What I have attempted to do is:
- do a task X times in one thread - check the time taken.
- do a task X / Y times in Y threads - check the time taken.
So if 1 thread takes T seconds to do 100'000'000 iterations of "work" then I would expect:
- 2 threads doing 50'000'000 iterations each would take ~ T / 2 seconds
- 3 threads doing 33'333'333 iterations each would take ~ T / 3 seconds
and so on until I reach some threading limit (number of cores or whatever).
So I wrote the code and tested it on my 8 core system (AMD Ryzen) plenty of RAM >16GB doing nothing else at the time.
- 1 Threads took: ~6.5s
- 2 Threads took: ~6.7s
- 3 Threads took: ~13.3s
- 8 Threads took: ~16.2s
So clearly something is not right here!
I ported the code into Godbolt and I see similar results. Godbolt only allows 3 threads, and for 1, 2 or 3 threads it takes ~8s (this varies by about 1s) to run. Here is the godbolt live code: https://godbolt.org/z/6eWKWr
Finally here is the code for reference:
#include <iostream>
#include <math.h>
#include <vector>
#include <thread>
#define randf() ((double) rand()) / ((double) (RAND_MAX))
void thread_func(uint32_t interations, uint32_t thread_id)
{
// Print the thread id / workload
std::cout << "starting thread: " << thread_id << " workload: " << interations << std::endl;
// Get the start time
auto start = std::chrono::high_resolution_clock::now();
// do some work for the required number of interations
for (auto i = 0u; i < interations; i++)
{
double value = randf();
double calc = std::atan(value);
(void) calc;
}
// Get the time taken
auto total_time = std::chrono::high_resolution_clock::now() - start;
// Print it out
std::cout << "thread: " << thread_id << " finished after: "
<< std::chrono::duration_cast<std::chrono::milliseconds>(total_time).count()
<< "ms" << std::endl;
}
int main()
{
// Note these numbers vary by about probably due to godbolt servers load (?)
// 1 Threads takes: ~8s
// 2 Threads takes: ~8s
// 3 Threads takes: ~8s
uint32_t num_threads = 3; // Max 3 in godbolt
uint32_t total_work = 100'000'000;
// Seed rand
std::srand(static_cast<unsigned long>(std::chrono::steady_clock::now().time_since_epoch().count()));
// Store the start time
auto overall_start = std::chrono::high_resolution_clock::now();
// Start all the threads doing work
std::vector<std::thread> task_list;
for (uint32_t thread_id = 1; thread_id <= num_threads; thread_id++)
{
task_list.emplace_back(std::thread([=](){ thread_func(total_work / num_threads, thread_id); }));
}
// Wait for the threads to finish
for (auto &task : task_list)
{
task.join();
}
// Get the end time and print it
auto overall_total_time = std::chrono::high_resolution_clock::now() - overall_start;
std::cout << "\n==========================\n"
<< "thread overall_total_time time: "
<< std::chrono::duration_cast<std::chrono::milliseconds>(overall_total_time).count()
<< "ms" << std::endl;
return 0;
}
Note: I have tried using std::async also with no difference (not that I was expecting any). I also tried compiling for release - no difference.
I have read such questions as: why-using-more-threads-makes-it-slower-than-using-less-threads and I can't see an obvious (to me) bottle neck:
CPU bound (needs lots of CPU resources)
: I have 8 coresMemory bound (needs lots of RAM resources)
: I have assigned my VM 10GB ram, running nothing elseI/O bound (Network and/or hard drive resources)
: No network trafic involved- There is no sleeping/mutexing going on here (like there is in my real project)
Questions are:
- Why might this be happening?
- What am I doing wrong?
- How can I improve this?