0

I have a df which contains names of countries number of cases(covid) and number of population by countries. So i want to sum up the number of cases. The problem is that in every row there are the population numbers which is the same in every row so they should not be summed up. So how can i summarise only the cases column.

cases_names_pop <- cases_names_pop %>%  group_by(countriesAndTerritories) %>% summarise_all((sum))

Here is my used data:

structure(list(countriesAndTerritories = c("Afghanistan", "Afghanistan", 
"Afghanistan", "Afghanistan", "Afghanistan", "Afghanistan", "Afghanistan", 
"Afghanistan", "Afghanistan", "Afghanistan", "Afghanistan", "Afghanistan", 
"Afghanistan", "Afghanistan", "Afghanistan", "Afghanistan", "Afghanistan", 
"Afghanistan", "Afghanistan", "Afghanistan", "Afghanistan", "Afghanistan", 
"Afghanistan", "Afghanistan", "Afghanistan", "Afghanistan", "Afghanistan", 
"Afghanistan", "Afghanistan", "Afghanistan", "Afghanistan", "Afghanistan", 
"Afghanistan", "Afghanistan", "Afghanistan", "Afghanistan", "Afghanistan", 
"Afghanistan", "Afghanistan", "Afghanistan", "Afghanistan", "Afghanistan", 
"Afghanistan", "Afghanistan", "Afghanistan", "Afghanistan", "Afghanistan", 
"Afghanistan", "Afghanistan", "Afghanistan", "Afghanistan", "Afghanistan", 
"Afghanistan", "Afghanistan", "Afghanistan", "Afghanistan", "Afghanistan", 
"Afghanistan", "Afghanistan", "Afghanistan", "Afghanistan", "Afghanistan", 
"Afghanistan", "Afghanistan", "Afghanistan", "Afghanistan", "Afghanistan", 
"Afghanistan", "Afghanistan", "Afghanistan", "Afghanistan", "Afghanistan", 
"Afghanistan", "Afghanistan", "Afghanistan", "Afghanistan", "Afghanistan", 
"Afghanistan", "Afghanistan", "Afghanistan", "Afghanistan", "Afghanistan", 
"Afghanistan", "Afghanistan", "Afghanistan", "Afghanistan", "Afghanistan", 
"Afghanistan", "Afghanistan", "Afghanistan", "Afghanistan", "Afghanistan", 
"Afghanistan", "Afghanistan", "Afghanistan", "Afghanistan", "Afghanistan", 
"Afghanistan", "Afghanistan", "Afghanistan"), cases = c(272L, 
0L, 228L, 214L, 0L, 200L, 185L, 246L, 252L, 154L, 232L, 282L, 
0L, 383L, 65L, 163L, 205L, 66L, 360L, 146L, 0L, 224L, 80L, 126L, 
58L, 40L, 121L, 86L, 95L, 132L, 76L, 157L, 123L, 0L, 113L, 199L, 
65L, 81L, 61L, 116L, 135L, 88L, 87L, 59L, 68L, 47L, 0L, 32L, 
66L, 129L, 96L, 0L, 10L, 77L, 68L, 62L, 145L, 44L, 7L, 5L, 17L, 
14L, 15L, 12L, 0L, 35L, 6L, 16L, 25L, 71L, 30L, 0L, 125L, 47L, 
0L, 17L, 40L, 99L, 75L, 35L, 34L, 28L, 24L, 26L, 96L, 74L, 20L, 
16L, 45L, 38L, 9L, 34L, 19L, 3L, 11L, 3L, 55L, 1L, 71L, 0L), 
    popData2019 = c(38041757L, 38041757L, 38041757L, 38041757L, 
    38041757L, 38041757L, 38041757L, 38041757L, 38041757L, 38041757L, 
    38041757L, 38041757L, 38041757L, 38041757L, 38041757L, 38041757L, 
    38041757L, 38041757L, 38041757L, 38041757L, 38041757L, 38041757L, 
    38041757L, 38041757L, 38041757L, 38041757L, 38041757L, 38041757L, 
    38041757L, 38041757L, 38041757L, 38041757L, 38041757L, 38041757L, 
    38041757L, 38041757L, 38041757L, 38041757L, 38041757L, 38041757L, 
    38041757L, 38041757L, 38041757L, 38041757L, 38041757L, 38041757L, 
    38041757L, 38041757L, 38041757L, 38041757L, 38041757L, 38041757L, 
    38041757L, 38041757L, 38041757L, 38041757L, 38041757L, 38041757L, 
    38041757L, 38041757L, 38041757L, 38041757L, 38041757L, 38041757L, 
    38041757L, 38041757L, 38041757L, 38041757L, 38041757L, 38041757L, 
    38041757L, 38041757L, 38041757L, 38041757L, 38041757L, 38041757L, 
    38041757L, 38041757L, 38041757L, 38041757L, 38041757L, 38041757L, 
    38041757L, 38041757L, 38041757L, 38041757L, 38041757L, 38041757L, 
    38041757L, 38041757L, 38041757L, 38041757L, 38041757L, 38041757L, 
    38041757L, 38041757L, 38041757L, 38041757L, 38041757L, 38041757L
    )), row.names = c(NA, 100L), class = "data.frame")

Thank you for your help in advance!

Matias Andina
  • 4,029
  • 4
  • 26
  • 58
  • Please use `dput(head(cases_names_pop,100))` and paste the output along with your question, otherwise you will get weird answers without adressing your issue! – Duck Dec 12 '20 at 18:07
  • Is this what you are looking for `df %>% group_by(countriesAndTerritories) %>% summarise(total=sum(cases), population=mean(popData2019))` ? – Matias Andina Dec 12 '20 at 18:47
  • thank you very much that what i was looking for! – Hiezl Balázs Dec 13 '20 at 08:01

0 Answers0