The following is some slightly modified code from the glmRob()
examples. When given the newdata
argument, predict.glmRob()
errors out. Am I doing something wrong?
suppressMessages(library(robust))
data(breslow.dat)
bres.rob <- glmRob(sumY ~ Age10 + Base4 * Trt, family = poisson(), data = breslow.dat)
predict(bres.rob, newdata = breslow.dat)
Error in NextMethod("predict"): no method to invoke
devtools::session_info()
#> ─ Session info ─────────────────────────────────────────────────────────────
#> setting value
#> version R version 4.0.3 (2020-10-10)
#> os macOS Catalina 10.15.7
#> system x86_64, darwin17.0
#> ui X11
#> language (EN)
#> collate en_US.UTF-8
#> ctype en_US.UTF-8
#> tz America/Los_Angeles
#> date 2020-12-14
#>
#> ─ Packages ─────────────────────────────────────────────────────────────────
#> package * version date lib source
#> assertthat 0.2.1 2019-03-21 [1] CRAN (R 4.0.0)
#> callr 3.5.1 2020-10-13 [1] CRAN (R 4.0.2)
#> cli 2.2.0 2020-11-20 [1] CRAN (R 4.0.3)
#> crayon 1.3.4 2017-09-16 [1] CRAN (R 4.0.0)
#> DEoptimR 1.0-8 2016-11-19 [1] CRAN (R 4.0.0)
#> desc 1.2.0 2018-05-01 [1] CRAN (R 4.0.0)
#> devtools 2.3.2 2020-09-18 [1] CRAN (R 4.0.2)
#> digest 0.6.27 2020-10-24 [1] CRAN (R 4.0.2)
#> ellipsis 0.3.1 2020-05-15 [1] CRAN (R 4.0.0)
#> evaluate 0.14 2019-05-28 [1] CRAN (R 4.0.0)
#> fansi 0.4.1 2020-01-08 [1] CRAN (R 4.0.0)
#> fit.models * 0.64 2020-08-02 [1] CRAN (R 4.0.2)
#> fs 1.5.0 2020-07-31 [1] CRAN (R 4.0.2)
#> glue 1.4.2 2020-08-27 [1] CRAN (R 4.0.2)
#> highr 0.8 2019-03-20 [1] CRAN (R 4.0.0)
#> htmltools 0.5.0 2020-06-16 [1] CRAN (R 4.0.0)
#> knitr 1.30 2020-09-22 [1] CRAN (R 4.0.2)
#> lattice 0.20-41 2020-04-02 [1] CRAN (R 4.0.3)
#> magrittr 2.0.1 2020-11-17 [1] CRAN (R 4.0.2)
#> MASS 7.3-53 2020-09-09 [1] CRAN (R 4.0.3)
#> memoise 1.1.0 2017-04-21 [1] CRAN (R 4.0.0)
#> mvtnorm 1.1-1 2020-06-09 [1] CRAN (R 4.0.0)
#> pcaPP 1.9-73 2018-01-14 [1] CRAN (R 4.0.0)
#> pkgbuild 1.1.0 2020-07-13 [1] CRAN (R 4.0.0)
#> pkgload 1.1.0 2020-05-29 [1] CRAN (R 4.0.0)
#> prettyunits 1.1.1 2020-01-24 [1] CRAN (R 4.0.0)
#> processx 3.4.5 2020-11-30 [1] CRAN (R 4.0.2)
#> ps 1.5.0 2020-12-05 [1] CRAN (R 4.0.2)
#> R6 2.5.0 2020-10-28 [1] CRAN (R 4.0.2)
#> remotes 2.2.0 2020-07-21 [1] CRAN (R 4.0.2)
#> rlang 0.4.9 2020-11-26 [1] CRAN (R 4.0.2)
#> rmarkdown 2.5 2020-10-21 [1] CRAN (R 4.0.2)
#> robust * 0.5-0.0 2020-03-08 [1] CRAN (R 4.0.0)
#> robustbase 0.93-6 2020-03-23 [1] CRAN (R 4.0.0)
#> rprojroot 2.0.2 2020-11-15 [1] CRAN (R 4.0.2)
#> rrcov 1.5-5 2020-08-03 [1] CRAN (R 4.0.2)
#> sessioninfo 1.1.1 2018-11-05 [1] CRAN (R 4.0.0)
#> stringi 1.5.3 2020-09-09 [1] CRAN (R 4.0.2)
#> stringr 1.4.0 2019-02-10 [1] CRAN (R 4.0.0)
#> testthat 3.0.0 2020-10-31 [1] CRAN (R 4.0.2)
#> usethis 1.6.3 2020-09-17 [1] CRAN (R 4.0.2)
#> withr 2.3.0 2020-09-22 [1] CRAN (R 4.0.2)
#> xfun 0.19 2020-10-30 [1] CRAN (R 4.0.2)
#> yaml 2.2.1 2020-02-01 [1] CRAN (R 4.0.0)
#>
#> [1] /Library/Frameworks/R.framework/Versions/4.0/Resources/library
Created on 2020-12-14 by the reprex package (v0.3.0)
Worth noting that the exact same thing does work with regular glm()
.
suppressMessages(library(robust))
data(breslow.dat)
bres.glm <- glm(sumY ~ Age10 + Base4 * Trt, family = poisson(), data = breslow.dat)
predict(bres.glm, newdata = breslow.dat)
#> 1 2 3 4 5 6 7 8
#> 2.957756 2.933407 2.704879 3.015431 3.913226 3.250763 2.979112 4.101214
#> 9 10 11 12 13 14 15 16
#> 3.360129 2.863352 3.955120 3.257157 2.912460 3.741554 4.459110 3.668917
#> 17 18 19 20 21 22 23 24
#> 3.034205 5.093412 3.131601 2.906475 2.930414 2.671553 3.110244 3.174723
#> 25 26 27 28 29 30 31 32
#> 3.873096 3.134184 2.644211 3.507451 3.917288 3.375050 2.641300 2.675629
#> 33 34 35 36 37 38 39 40
#> 2.592602 2.854897 3.163672 2.890335 2.625822 3.756825 3.201280 2.557211
#> 41 42 43 44 45 46 47 48
#> 2.784067 2.988840 3.585320 3.060731 3.448097 2.484164 3.182476 2.577124
#> 49 50 51 52 53 54 55 56
#> 5.757692 3.003209 3.274328 3.308657 3.525533 3.268830 2.863768 2.857114
#> 57 58 59
#> 2.805090 2.891444 2.892553
Created on 2020-12-14 by the reprex package (v0.3.0)