We iteratively add the input list xs
to a list, starting with the empty list, to get the ever growing lists of repeated xs
lists, and we put each such list of 0, 1, 2, ... xs
lists through sequence
, concatting the resulting lists:
infiniteListComb :: [a] -> [[a]]
infiniteListComb xs = sequence =<< iterate (xs :) []
-- = concatMap sequence (iterate (xs :) [])
e.g.
> take 4 (iterate ([1,2,3] :) [])
[[],[[1,2,3]],[[1,2,3],[1,2,3]],[[1,2,3],[1,2,3],[1,2,3]]]
> sequence [[1,2,3],[1,2,3]]
[[1,1],[1,2],[1,3],[2,1],[2,2],[2,3],[3,1],[3,2],[3,3]]
> take 14 $ sequence =<< iterate ([1,2,3] :) []
[[],[1],[2],[3],[1,1],[1,2],[1,3],[2,1],[2,2],[2,3],[3,1],[3,2],[3,3],[1,1,1]]
The essence of Monad is flatMap (splicing map).
sequence
is the real magician here. It is equivalent to
sequence [xs, ys, ..., zs] =
[ [x,y,...,z] | x <- xs, y <- ys, ..., z <- zs ]
or in our case
sequence [xs, xs, ..., xs] =
[ [x,y,...,z] | x <- xs, y <- xs, ..., z <- xs ]
Coincidentally, sequence . replicate n
is also known as replicateM n
. But we spare the repeated counting from 0 to the growing n
, growing them by 1 at a time instead.
We can inline and fuse together all the definitions used here, including
concat [a,b,c...] = a ++ concat [b,c...]
to arrive at a recursive solution.
Another approach, drawing on answer by chi,
combs xs = ys where
ys = [[]] ++ weave [ map (x:) ys | x <- xs ]
weave ((x:xs):r) = x : weave (r ++ [xs])
There are many ways to implement weave
.