I want to make a fair comparison between different machine learning models. However, I find that the ridge regression model will automatically use multiple processors and there is no parameter that I can restrict the number of used processors (such as n_jobs). Is there any possible way to solve this problem?
A minimal example:
from sklearn.datasets import make_regression
from sklearn.linear_model import RidgeCV
features, target = make_regression(n_samples=10000, n_features=1000)
r = RidgeCV()
r.fit(features, target)
print(r.score(features, target))