Your aggregated dataframe has a multi level column index. So you need to address this by specifying both senority_level
and mean
.
df_agg.sort_values(('seniority_level', 'mean'), ascending=False)
Quick check to demonstrate:
df = pd.DataFrame({
'Accounting': [1, 2, 3],
'Acoustics': [4, 5, 6],
}).melt(var_name='Subject Field', value_name='seniority_level')
df_agg = df.groupby('Subject Field').agg(
{'seniority_level':['min', 'mean', 'median']}
)
df_agg.sort_values(('seniority_level','mean'), ascending=True)
seniority_level
min mean median
Subject Field
Accounting 1 2 2
Acoustics 4 5 5
df_agg.sort_values(('seniority_level','mean'), ascending=False)
seniority_level
min mean median
Subject Field
Acoustics 4 5 5
Accounting 1 2 2