i am getting this error
File "E:\demo3\modules\modelTrain.py", line 179, in grayscaleImage
gry = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
cv2.error: OpenCV(4.2.0) c:\projects\opencv-python\opencv\modules\imgproc\src\color.simd_helpers.hpp:92: error: (-2:Unspecified error) in function '__cdecl cv::impl::`anonymous-namespace'::CvtHelper<struct cv::impl::`anonymous namespace'::Set<3,4,-1>,struct cv::impl::A0xe227985e::Set<1,-1,-1>,struct cv::impl::A0xe227985e::Set<0,2,5>,2>::CvtHelper(const class cv::_InputArray &,const class cv::_OutputArray &,int)'
> Invalid number of channels in input image:
> 'VScn::contains(scn)'
> where
> 'scn' is 1
I am getting error at this line
gry = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
my complete code
from flask import Flask, request
from flask_restful import Api, Resource
import sys, os
from myconstants1 import path_logs, path_resources
from logConfig1 import setup_logger
import pathlib, pycountry, cv2, pickle, random, PIL, sys
from pathlib import Path
import pathlib as pl
import numpy as np
from sklearn.model_selection import train_test_split
import pandas as pd
import matplotlib.pyplot as plt
from keras.models import Sequential
from keras.layers import Dense
from keras.optimizers import Adam
from keras.utils.np_utils import to_categorical
from keras.layers import Flatten, Dropout
from keras.layers.convolutional import Conv2D, MaxPooling2D
from keras.preprocessing.image import ImageDataGenerator
from PIL import Image, ImageOps
from glob import glob
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'
logger = setup_logger('/modelTrain', path_logs+'/modelTrain.log')
app = Flask(__name__)
api = Api(app)
path = sys.path
path = Path(__file__).parent
print("path2", path)
class HandleRequest5(Resource):
y_validation = ""
x_test = ""
x_validation = ""
x_train = ""
@classmethod
def post(cls, json):
data = request.get_json()
json = ({
"Status": "failed",
"message": "ALL fields are mandatory"
})
try:
country_code = data["country_code"].upper()
batch_size = data["batch_size"]
step_per_epoch_val = data["step_per_epoch_val"]
epoch = data["epoch"]
except KeyError:
print(json)
logger.debug(json)
return(json)
try:
country = pycountry.countries.get(alpha_3 = data["country_code"].upper()).name.lower()
print("country1", country)
logger.debug(f'country1 : {country}')
country = country.split()
country =("_".join(country))
print("country : ", country)
logger.debug(f"country : {country}")
alpha_2 = pycountry.countries.get(alpha_3 = data["country_code"].upper()).alpha_2
print("alpha_2 : ", alpha_2)
logger.debug(f"alpha_2 : {alpha_2}")
except AttributeError:
jsonify1 = {
"status": "invalid",
"message" : "Invalid country_code"
}
print("invalid country_code")
logger.debug({
"status": "invalid",
"message" : "Invalid country_code"
})
return jsonify1
# path = rf'{path}/{country}' # folder with all class folders
labelFile = rf'{path_resources}/{country}/labels.csv'
imageDimensions = (99, 200, 3)
print("imageDimensions:", imageDimensions)
testRatio = 0.2 # if 1000 images split will 200 for testing
validationRatio = 0.2
print("line 91 is going to execute")
cls.importImages( cls,testRatio , validationRatio , imageDimensions ,country , labelFile)
def importImages(cls, testRatio, validationRatio, imageDimensions, country, labelFile):
count = 0
images = []
classNo = []
p = pl.Path(f'{path_resources}/{country}')
mylist = [x for x in p.iterdir() if x.is_dir()]
print("mylist1", mylist)
print("total classs detected :", len(mylist))
noofClasses = len(mylist)
print("noofClasses:", noofClasses)
print("importing classes...")
for x in range(0, len(mylist)):
myPicList = os.listdir(os.path.join(str(path_resources), str(country)+'//'+str(count)))
print("myPicList1:", myPicList)
#for y in myPicList:
#print(os.path.join(path, str(count), y))
#curImg = cv2.imread((str(path_resources)+"/"+str(count)+"//"+y))
for y in myPicList:
print(os.path.join(path_resources, country, str(count)+y))
curImg = cv2.imread(f"{path_resources}{country}/{str(count)}//{y}")
images.append(curImg)
classNo.append(count)
print(count, end = " ")
count+=1
print(" ")
images = np.array(images, dtype=np.uint8)
images = np.array(images)
print("line 128")
print(images.shape)
#images = np.append(images,4)
#images = images.append((Image.fromarray(images, dtype=np.float32).convert('RGB') / 255.))
# image = Image.fromarray(images)
#images = images.convert("RGB")
classNo = np.array(classNo)
cls.splitData(cls, images, classNo, testRatio, validationRatio , imageDimensions, labelFile, noofClasses)
return images, classNo, noofClasses
# split data #
def splitData(cls, images, classNo, testRatio, validationRatio , imageDimensions, labelFile, noofClasses):
x_train, x_test, y_train, y_test = train_test_split(images, classNo, test_size = testRatio)
x_train, x_validation, y_train, y_validation = train_test_split(x_train, y_train , test_size = validationRatio)
# to check if no of images matches to number of labels for each data set
print("data shapes...")
print("train : ", end = "");print(x_train.shape, y_train.shape)
print("validation :", end = ""); print(x_validation.shape, y_validation.shape)
print("test :", end = ""); print(x_test.shape, y_test.shape)
assert (x_train.shape[0] == y_train.shape[0]), "the no of images is not equal to the no of labels in training set"
assert (x_validation.shape[0] == y_validation.shape[0]), "the no of images is not equal to the no of labels in validation set"
assert (x_test.shape[0] == y_test.shape[0]), "the no of images is not equal to the no of labels in test set"
#print(x_train.shape)
assert (x_train.shape[1:] == (imageDimensions)), "the dimension of training images are wrong"
assert (x_validation.shape[1:] == (imageDimensions)), "the dimension of validation images are wrong"
assert (x_test.shape[1:] == (imageDimensions)), "the dimension of test images are wrong"
data = pd.read_csv(labelFile)
cls.grayscaleImage( images, x_train, x_validation, x_test, y_train, y_validation, y_test )
return images, x_train, x_validation, x_test, y_train, y_validation, y_test
# preprocessing the image #
@classmethod
def grayscaleImage(cls,images, x_train, x_validation, x_test, y_train, y_validation, y_test):
ret_lst = []
for image in images:
print("line 172")
print(image.ndim == 2)
print("line 175")
print(image.shape)
print("line 177")
image= np.array(image, dtype=np.uint8)
print(image.dtype)
gry = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
ret_lst.append(gry)
image = np.array(ret_lst, dtype=np.uint8)
print("line 178")
print(image.shape)
cls.equalize( cls,image, ret_lst, x_train, x_validation, x_test, y_train, y_test, y_validation)
return image, ret_lst, x_train, x_validation, x_test, y_train, y_test, y_validation
def equalize(cls,image, ret_lst, x_train, x_validation, x_test, y_train, y_test, y_validation):
image = np.array(image)
image = image.astype(np.uint8)
print(image.dtype)
hist,bins = np.histogram(image.flatten(),256,[0,256])
cdf = hist.cumsum()
cdf_normalized = cdf * float(hist.max()) / cdf.max()
plt.plot(cdf_normalized, color = 'b')
plt.hist(image.flatten(),256,[0,256], color = 'r')
plt.xlim([0,256])
plt.legend(('cdf','histogram'), loc = 'upper left')
#plt.show()
cls.preprocessing( image, ret_lst, x_train, x_validation, x_test, y_train, y_test, y_validation)
return image , ret_lst, x_train, x_validation, x_test, y_train, y_test, y_validation
@classmethod
def preprocessing(cls, image, equalize, x_train, x_validation, x_test, y_train, y_test, y_validation):
images1 = cls.grayscaleImage(image, x_train, x_validation, x_test, y_train, y_validation, y_test)
images1 = equalize(images1) #standardize the lightining of an image
images1 = images1/255 # to normaize value between 0 and 1 instead of 0 to 255
return images1 , x_train, x_validation, x_test, y_train, y_test, y_validation
x_train = np.array(list(map(preprocessing, x_train))) # to iterate and preprocess all images
x_validation = np.array(list(map(preprocessing, x_validation)))
x_test = np.array(list(map(preprocessing, x_test)))
#cv2.imshow("grayscale images", x_train[random.randint(0, len(x_train)-1)]) #to check if training is done properly
# add a depth of 1 #
x_train = x_train.reshape(x_train.shape[0], x_train.shape[1], x_train.shape[2], 1)
x_validation = x_validation.reshape(x_validation .shape[0], x_validation .shape[1], x_validation .shape[2], 1)
x_test = x_test.reshape(x_test.shape[0], x_test.shape[1], x_test.shape[2], 1)
def dataAugmentation(cls, x_train, y_train, noofClasses):
# augmentation of images to make it more generic #
dataGen = ImageDataGenerator(width_shift_range = 0.1,
height_shift_range = 0.1,
zoom_range = 0.2,
shear_range = 0.1,
rotation_range = 10)
dataGen.fit(x_train)
batches = dataGen.flow(x_train, y_train, batch_size = 20)
x_batch, y_batch = next(batches)
# to show augmentated image sample
#fig, axs = plt.subplots(24, 2, figsize = (20, 5))
#fig.tight_layout()
#print(axs)
#print("axs0:",axs[0])
#print("axs1:",axs[1])
#for i in range(10):
#axs[i].imshow(x_batch[i].reshape(imageDimensions[0], imageDimensions[1]))
#axs[0][1].imshow(x_batch[i].reshape(imageDimensions[0], imageDimensions[1]))
#axs[i].axis("off")
#axs[0][1].axis('off')
#plt.show()
y_train = to_categorical(y_train, noofClasses)
y_validation = to_categorical(y_validation, noofClasses)
y_test = to_categorical(y_test, noofClasses)
cls.splitData(y_validations)
cls.myModel(noofClasses)
# convolution neural network #
def myModel(cls, noofClasses, country):
no_of_filters = 60
size_of_filter = (5,5) #this is kernal that move around the image to get the features
size_of_filter2 = (3,3)
size_of_pool = (2,2)
no_of_nodes = 200
model = Sequential()
model.add(Conv2D(no_of_filters, size_of_filter, input_shape = (imageDimensions[0], imageDimensions[1], 1), activation = "relu"))
model.add(Conv2D(no_of_filters, size_of_filter, activation = "relu"))
model.add(MaxPooling2D(pool_size = size_of_pool))
model.add(Conv2D(no_of_filters//2, size_of_filter2, activation = "relu"))
model.add(Conv2D(no_of_filters//2, size_of_filter2, activation = "relu"))
model.add(Dropout(0.5))
model.add(Flatten())
model.add(Dense(no_of_nodes, activation = "relu"))
model.add(Dropout(0.5))
# model.add(Flatten())
model.add(Dense(noofClasses, activation = "softmax"))
# compile model #
model.compile(Adam(lr = 0.001), loss = "categorical_crossentropy", metrics = ["accuracy"])
return model
# train #
model = myModel()
print(model.summary())
history = model.fit_generator (dataGen.flow(x_train, y_train, batch_size = batch_size_val), steps_per_epoch = steps_per_epoch_val, epochs = epoch_val, validation_data = (x_train, y_train))
# plot #
plt.figure(1)
plt.plot(history.history["loss"])
plt.plot(history.history["val_loss"])
plt.legend(["training", "validation"])
plt.title("loss")
plt.xlabel("epoch")
plt.figure(2)
plt.plot(history.history["accuracy"])
plt.plot(history.history["val_accuracy"])
plt.legend(["training", "accuracy"])
plt.title("accuracy")
plt.xlabel("epoch")
#plt.show()
score = model.evaluate(x_test, y_test, verbose = 0)
print("test score: ", score[0])
print("test accuracy: ", score[1])
###############################################################
#store the model as pickle object #
#save_path = rf'{path}/{country}'
pickle_out = open(rf"{path_resources}/{country}.p", "wb")
#model = model.save(rf'{country}_{epoch_val}.h5')
pickle.dump(model, pickle_out)
pickle_out.close()
print(rf"{country}_model saved...")
cv2.waitKey(0)
api.add_resource(HandleRequest5, '/modelTrain')
if __name__ == ' __main__ ':
app.run(debug = False)