I wrote a function:
# given a n x m grid return how many different ways there are to move from top left to
# bottom right by only being able to move right or down
def grid(n, m, memo = {}):
if f'{n},{m}' in memo:
return memo[f'{n},{m}']
if n == 1 and m == 1:
return 1
if n == 0 or m == 0:
return 0
memo[f'{n},{m}'] = grid(n,m-1,) + grid(n-1,m)
return grid(n,m-1,) + grid(n-1,m)
Recently I read a bit about short-circuiting in Python and I am trying to understand it further.
As I understand it does not provide any boost in runtime, just sort of syntax sugar.
For example:
1 < 2 < 3 # is True
1 < 2 and 2 < 3 # is also True
# hence
(1 < 2 < 3) == 1 < 2 and 2 < 3 # is True
I was wondering can I write my function with this kind of short-circuiting in my if
statements?
I came up with this:
def grid(n, m, memo = {}):
if f'{n},{m}' in memo:
return memo[f'{n},{m}']
if (n or m) == 1:
return 1
if (n and m) == 0:
return 0
memo[f'{n},{m}'] = grid(n,m-1,) + grid(n-1,m)
return grid(n,m-1,) + grid(n-1,m)
Is there any smarter way of using the short-circuit here?