original outdated code: Write an algorithm that compute the Euler's number until
My professor from Algorithms course gave me the following homework:
Write a C/C++ program that calculates the value of the Euler's number (e) with a given accuracy of eps > 0. Hint: The number e = 1 + 1/1! +1/2! + ... + 1 / n! + ... = 2.7172 ... can be calculated as the sum of elements of the sequence x_0, x_1, x_2, ..., where x_0 = 1, x_1 = 1+ 1/1 !, x_2 = 1 + 1/1! +1/2 !, ..., the summation continues as long as the condition |x_(i+1) - x_i| >= eps is valid.
As he further explained, eps is the precision of the algorithm. For example, the precision could be 1/100 |x_(i + 1) - x_i| = absolute value of ( x_(i+1) - x_i )
Currently, my program looks in the following way:
#include<iostream>
#include<cstdlib>
#include<math.h>
// Euler's number
using namespace std;
double factorial(double n)
{
double result = 1;
for(double i = 1; i <= n; i++)
{
result = result*i;
}
return result;
}
int main()
{
long double euler = 2;
long double counter = 2;
long double epsilon = 1.0/1000;
long double moduloDifference;
do
{
euler+= 1 / factorial(counter);
counter++;
moduloDifference = (euler + 1 / factorial(counter+1) - euler);
} while(moduloDifference >= epsilon);
printf("%.35Lf ", euler );
return 0;
}
Issues:
- It seems my epsilon value does not work properly. It is supposed to control the precision. For example, when I wish precision of 5 digits, I initialize it to 1.0/10000, and it outputs 3 digits before they get truncated after 8 (.7180).
- When I use long double data type, and epsilon = 1/10000, my epsilon gets the value 0, and my program runs infinitely. Yet, if change the data type from long double to double, it works. Why epsilon becomes 0 when using long double data type?
- How can I optimize the algorithm of finding Euler's number? I know, I can rid off the function and calculate the Euler's value on the fly, but after each attempt to do that, I receive other errors.