Good question.
I've included the code that I wrote to do this, below. The process we will follow is:
- Load the data from a csv
- Define a function that will calculate the period for each date
- Apply the function to our data and store the result as a new column
import pandas as pd
# Step 1
# read in the data from a csv, parsing dates and store the data in a DataFrame
data = pd.read_csv("filepath.csv", parse_dates=["Date"])
# Create day, month and year columns in our DataFrame
data['day'] = data['Date'].dt.day
data['month'] = data['Date'].dt.month
data['year'] = data['Date'].dt.year
# Step 2
# Define a function that will get our periods from a given date
def get_period(date):
day = date.day
month = date.month
year = date.year
if day > 25:
if month == 12: # if december, increment year and change month to jan.
year += 1
month = 1
else:
month += 1
# convert our year and month into strings that we can concatenate easily
year_string = str(year).zfill(4) #
month_string = str(month).zfill(2)
period = str(year_string) + str(month_string) # concat the strings together
return period
# Step 3
# Apply our custom function (get_period) to the DataFrame
data['period'] = data.apply(get_period, axis = 1)