user_id user_verified
1 False
2 False
3 False
4 True
5 False
6 True
How to remove all the 'False'values and keep 'True' values?
user_id user_verified
1 False
2 False
3 False
4 True
5 False
6 True
How to remove all the 'False'values and keep 'True' values?
df = df[df['user_verified'] == True]
You can check the condition that way. This will keep the row if True
in column 2.
You can also drop row based on bolean:
df.drop(df[df['user_verified'] == False].index, inplace=True)
Or even, to keep the True
:
df = df[df.user_verified]
Assuming your data is in a dataframe as specified in a similar format below:
data = pd.DataFrame(zip(range(1,7), [False, False, False, False, True, False, True]), columns=['user_id', 'user_verified'])
You can simply use masking since the user_verified is boolean:
verified = data[data['user_verified']]
There are some ways to do it
df = df[df['user_verified'] == True]
Or you can also use
df = df.loc[df['user_verified'] == True]
Use:
df = df[df['user_verified'] == True]
or(without creating copy):
df = df.loc[df.user_verified,:]