I have a dataset like this:
import pandas as pd
import numpy as np
df = pd.DataFrame({'Name': ['A', 'B', 'C', 'A', 'B'], 'City': [1, 3, 5, np.nan, np.nan], 'Club': [2, 4, 6, np.nan, np.nan], 'Date': ['x', 'y', 'z', 'n', 'g']})
Name City Club Date
A 1 2 x
B 3 4 y
C 5 6 z
A NaN NaN n
B NaN NaN g
How do I use values from "A" and "B" in previous rows to replace NaN in the new rows?
Expected:
Name City Club Date
A 1 2 x
B 3 4 y
C 5 6 z
A 1 2 n
B 3 4 g
So far I tired df['City'].fillna( method ='ffill', inplace = True)
,
but it only allows me to fill missing value one column.
If I use df['City','Club'].fillna( method ='ffill', inplace = True)
I got KeyError: ('City', 'Club')
.