A python solution
def ticker_list():
tckr_list = ['AVV.L', 'SCT.L', 'ROR.L', 'OCDO.L', 'CCC.L', '3IN.L', 'AVST.L', 'ASC.L', 'SPX.L','ECM.L', 'TRN.L', 'PLTR']
return tckr_list
def Optimize_MaxR_Vc():
# after getting a list of your asset returns...
# Number of assets in the portfolio
tckr_list = ticker_list() # this should be for the number of assets you have. if saved as a
Assets = tckr_list
num_assets = len(Assets)
# Lists of variables for Portfolio creation
Portfolio_returns = []
Portfolio_Volatilities = []
Portfolio_GrossR = []
Aveva_Returns_weight = []
Softcat_Returns_weight = []
Rotork_Returns_weight = []
Ocado_Returns_weight = []
Computacenter_Returns_weight = []
TInfrastructure_Returns_weight = []
Avast_Returns_weight = []
ASOS_Returns_weight = []
Spirax_Returns_weight = []
Electrocomponents_Returns_weight = []
Trainline_Returns_weight = []
Palantir_Returns_weight = []
#Optimising for expected returns and standard deviation
Gross_rtn = Gross_return()
for x in range (100000):
weights = np.random.random(num_assets)
weights /= np.sum(weights)
Portfolio_returns.append(np.sum(weights * Portfolio_rtns.mean() * 250)) # expected returns
Portfolio_Volatilities.append(np.sqrt(np.dot(weights.T,np.dot(Portfolio_rtns.cov() * 250, weights)))) # standard deviation
Portfolio_GrossR.append(np.sum(weights * Gross_rtn.mean() * 250)) # Gross returns
Aveva_Returns_weight.append(weights[0])
Softcat_Returns_weight.append(weights[1])
Rotork_Returns_weight.append(weights[2])
Ocado_Returns_weight .append(weights[3])
Computacenter_Returns_weight.append(weights[4])
TInfrastructure_Returns_weight.append(weights[5])
Avast_Returns_weight.append(weights[6])
ASOS_Returns_weight.append(weights[7])
Spirax_Returns_weight.append(weights[8])
Electrocomponents_Returns_weight.append(weights[9])
Trainline_Returns_weight.append(weights[10])
Palantir_Returns_weight.append(weights[11])
# Create an array of data for portfolio
Portfolio_returns = np.array(Portfolio_returns)
Portfolio_Volatilities = np.array(Portfolio_Volatilities)
Portfolio_GrossR = np.array(Portfolio_GrossR)
Aveva_Returns_Weight = np.array(Aveva_Returns_weight)
Softcat_Returns_Weight = np.array(Softcat_Returns_weight)
Rotork_Returns_Weight = np.array(Rotork_Returns_weight)
Ocado_Returns_Weight = np.array(Ocado_Returns_weight)
Computacenter_Returns_Weight = np.array(Computacenter_Returns_weight)
TInfrastructure_Returns_Weight = np.array(TInfrastructure_Returns_weight)
Avast_Returns_Weight = np.array(Avast_Returns_weight)
ASOS_Returns_Weight = np.array(ASOS_Returns_weight)
Spirax_Returns_Weight = np.array(Spirax_Returns_weight)
Electrocomponents_Returns_Weight = np.array(Electrocomponents_Returns_weight)
Trainline_Returns_Weight = np.array(Trainline_Returns_weight)
Palantir_Returns_Weight = np.array(Palantir_Returns_weight)
#Creating a table
Portfolios = pd.DataFrame({'Return': Portfolio_returns,
'Volatility': Portfolio_Volatilities,
'Gross Return': Portfolio_GrossR,
'Aveva Weight': Aveva_Returns_weight,
'Softcat Weight': Softcat_Returns_weight,
'Rotork Weight': Rotork_Returns_weight,
'Ocado Weight': Ocado_Returns_weight,
'Computacenter Weight': Computacenter_Returns_weight,
'3Infrastructure Weight': TInfrastructure_Returns_weight,
'Avast Weight': Avast_Returns_weight,
'ASOS Weight': ASOS_Returns_weight,
'Spirax Weight': Spirax_Returns_weight,
'Electrocomponents': Electrocomponents_Returns_weight,
'Trainline': Trainline_Returns_weight,
'Palantir': Palantir_Returns_weight})
# Custom Portfolios
# With this range, what different types of portfolios can we build?
# if volatitlity is within this range, where is volatility when you search for max return?
Min_return = Portfolios[(Portfolios['Volatility']>=.135) & (Portfolios['Volatility']<=14.358)].min()['Return']
Return = Portfolios.iloc[np.where(Portfolios['Return']==Min_return)]
Min_return_1 = Portfolios[(Portfolios['Volatility']>=.200) & (Portfolios['Volatility']<=9.00)].min()['Return']
Return_2 = Portfolios.iloc[np.where(Portfolios['Return']==Min_return_1)]
Min_return_2 = Portfolios[(Portfolios['Volatility']>=.300) & (Portfolios['Volatility']<=8.00)].min()['Return']
Return_3 = Portfolios.iloc[np.where(Portfolios['Return']==Min_return_2)]
Min_return_3 = Portfolios[(Portfolios['Volatility']>=.400) & (Portfolios['Volatility']<=7.00)].min()['Return']
Return_4 = Portfolios.iloc[np.where(Portfolios['Return']==Min_return_3)]
Min_return_4 = Portfolios[(Portfolios['Volatility']>=.500) & (Portfolios['Volatility']<=6.00)].min()['Return']
Return_5 = Portfolios.iloc[np.where(Portfolios['Return']==Min_return_4)]
Min_return_5 = Portfolios[(Portfolios['Volatility']>=.600) & (Portfolios['Volatility']<=5.00)].min()['Return']
Return_6 = Portfolios.iloc[np.where(Portfolios['Return']==Min_return_5)]
Min_return_6 = Portfolios[(Portfolios['Volatility']>=.700) & (Portfolios['Volatility']<=4.00)].min()['Return']
Return_7 = Portfolios.iloc[np.where(Portfolios['Return']==Min_return_6)]
Min_return_7 = Portfolios[(Portfolios['Volatility']>=.800) & (Portfolios['Volatility']<=3.00)].min()['Return']
Return_8= Portfolios.iloc[np.where(Portfolios['Return']==Min_return_7)]
Min_return_8 = Portfolios[(Portfolios['Volatility']>=.900) & (Portfolios['Volatility']<=2.00)].min()['Return']
Return_8= Portfolios.iloc[np.where(Portfolios['Return']==Min_return_8)]
Min_return_9 = Portfolios[(Portfolios['Volatility']>=.100) & (Portfolios['Volatility']<=1.00)].min()['Return']
Return_9= Portfolios.iloc[np.where(Portfolios['Return']==Min_return_9)]
Final_MaxOp = pd.concat([Return,Return_2, Return_3, Return_4, Return_5, Return_6,
Return_7, Return_8, Return_9])
return Final_MaxOp
I saved it as a module in python lab so that to run it, all I needed to do was:
Portfolio = P.Optimize_MaxR_Vc() # load the results
Portfolio # show the results
P is the module I saved it under so I imported it as
from Portfolio import P
Before coming up with the ranges, run:
# What is the max returns?
max(Portfolio_returns)
#What is the min volatility?
min(Portfolio_Volatilities)
You can separate the various parts of this code into different functions and run them to test out different ranges.