OK, you could try to use Linear Congruential Generator, which has some interesting properties - with good choice of constants it will cover whole range [0...2n) once without repetition before it hits its period. Thus, it is basically equivalent to sampling without replacement.
Code for n=64, if you need exactly 63, I could dig out set of constant, just ask.
Python 3.9.1, Win10 x64
import numpy as np
class LCG(object):
UZERO: np.uint64 = np.uint64(0)
UONE : np.uint64 = np.uint64(1)
def __init__(self, seed: np.uint64, a: np.uint64, c: np.uint64) -> None:
self._seed: np.uint64 = np.uint64(seed)
self._a : np.uint64 = np.uint64(a)
self._c : np.uint64 = np.uint64(c)
def next(self) -> np.uint64:
self._seed = self._a * self._seed + self._c
return self._seed
def seed(self) -> np.uint64:
return self._seed
def set_seed(self, seed: np.uint64) -> np.uint64:
self._seed = seed
def skip(self, ns: np.int64) -> None:
"""
Signed argument - skip forward as well as backward
The algorithm here to determine the parameters used to skip ahead is
described in the paper F. Brown, "Random Number Generation with Arbitrary Stride,"
Trans. Am. Nucl. Soc. (Nov. 1994). This algorithm is able to skip ahead in
O(log2(N)) operations instead of O(N). It computes parameters
A and C which can then be used to find x_N = A*x_0 + C mod 2^M.
"""
nskip: np.uint64 = np.uint64(ns)
a: np.uint64 = self._a
c: np.uint64 = self._c
a_next: np.uint64 = LCG.UONE
c_next: np.uint64 = LCG.UZERO
while nskip > LCG.UZERO:
if (nskip & LCG.UONE) != LCG.UZERO:
a_next = a_next * a
c_next = c_next * a + c
c = (a + LCG.UONE) * c
a = a * a
nskip = nskip >> LCG.UONE
self._seed = a_next * self._seed + c_next
#%%
np.seterr(over='ignore')
seed = np.uint64(1)
rng64 = LCG(seed, np.uint64(6364136223846793005), np.uint64(1))
print(rng64.next())
print(rng64.next())
print(rng64.next())
#%%
rng64.skip(-3) # back by 3
print(rng64.next())
print(rng64.next())
print(rng64.next())
rng64.skip(-3) # back by 3
rng64.skip(2) # forward by 2
print(rng64.next())