My general recommendations are:
- A file should
#include
what it needs.
- It should not expect something else to
#include
something it needs.
- It should not
#include
something it doesn't need because something else might want it.
The real test is this: you should be able to compile a source file consisting of any single #include
and get no errors or warnings beyond "There is no main()
". If you pass this test, then you can expect anything else to be able to #include
your file with no problems. I've written a short script called "hcheck" which I use to test this:
#!/usr/bin/env bash
# hcheck: Check header file syntax (works on source files, too...)
if [ $# -eq 0 ]; then
echo "Usage: $0 <filename>"
exit 1
fi
for f in "$@" ; do
case $f in
*.c | *.cpp | *.cc | *.h | *.hh | *.hpp )
echo "#include \"$f\"" > hcheck.cc
printf "\n\033[4mChecking $f\033[0m\n"
make -s $hcheck.o
rm -f hcheck.o hcheck.cc
;;
esac
done
I'm sure there are several things that this script could do better, but it should be a good starting point.
If this is too much, and if your header files almost always have corresponding source files, then another technique is to require that the associated header be the first #include
in the source file. For example:
Foo.h:
#ifndef Foo_h
#define Foo_h
/* #includes that Foo.h needs go here. */
/* Other header declarations here */
#endif
Foo.c:
#include "Foo.h"
/* other #includes that Foo.c needs go here. */
/* source code here */
This also shows the "include guards" in Foo.h that others mentioned.
By putting #include "Foo.h"
first, Foo.h
must #include
its dependencies, otherwise you'll get a compile error.