I have implemented a CNN-based regression model that uses a data generator to use the huge amount of data I have. Training and evaluation work well, but there's an issue with the prediction. If for example I want to predict values from a test dataset of 50 samples, I use model.predict with a batch size of 5. The problem is that model.predict returns 5 values repeated 10 times, instead of 50 different values . The same thing happens if I change to batch size to 1, it will return one value 50 times.
To solve this issue, I used a full batch size (50 in my example), and it worked. But I can't I use this method on my whole test data because it's too huge.
Do you have any other solution, or what is the problem in my approach?
My data generator code:
import numpy as np
import keras
class DataGenerator(keras.utils.Sequence):
'Generates data for Keras'
def __init__(self, list_IDs, data_X, data_Z, target_y batch_size=32, dim1=(120,120),
dim2 = 80, n_channels=1, shuffle=True):
'Initialization'
self.dim1 = dim1
self.dim2 = dim2
self.batch_size = batch_size
self.data_X = data_X
self.data_Z = data_Z
self.target_y = target_y
self.list_IDs = list_IDs
self.n_channels = n_channels
self.shuffle = shuffle
self.on_epoch_end()
def __len__(self):
'Denotes the number of batches per epoch'
return int(np.floor(len(self.list_IDs) / self.batch_size))
def __getitem__(self, index):
'Generate one batch of data'
# Generate indexes of the batch
indexes = self.indexes[index*self.batch_size:(index+1)*self.batch_size]
# Find list of IDs
list_IDs_temp = [self.list_IDs[k] for k in range(len(indexes))]
# Generate data
([X, Z], y) = self.__data_generation(list_IDs_temp)
return ([X, Z], y)
def on_epoch_end(self):
'Updates indexes after each epoch'
self.indexes = np.arange(len(self.list_IDs))
if self.shuffle == True:
np.random.shuffle(self.indexes)
def __data_generation(self, list_IDs_temp):
'Generates data containing batch_size samples' # X : (n_samples, *dim, n_channels)
# Initialization
X = np.empty((self.batch_size, *self.dim1, self.n_channels))
Z = np.empty((self.batch_size, self.dim2))
y = np.empty((self.batch_size))
# Generate data
for i, ID in enumerate(list_IDs_temp):
# Store sample
X[i,] = np.load('data/' + data_X + ID + '.npy')
Z[i,] = np.load('data/' + data_Z + ID + '.npy')
# Store target
y[i] = np.load('data/' + target_y + ID + '.npy')
How I call model.predict()
predict_params = {'list_IDs': 'indexes',
'data_X': 'images',
'data_Z': 'factors',
'target_y': 'True_values'
'batch_size': 5,
'dim1': (120,120),
'dim2': 80,
'n_channels': 1,
'shuffle'=False}
# Prediction generator
prediction_generator = DataGenerator(test_index, **predict_params)
predition_results = model.predict(prediction_generator, steps = 1, verbose=1)