This is a possible workaround: using time.sleep()
instead of Timer
means a "graceful shutdown" mechanism can be implemented ... for Python3 where, it appears, KeyboardInterrupt
is only raised in user code for the main thread. Otherwise, it appears, the exception is "ignored" as per here: in fact it results in the thread where it occurs dying immediately, but not any ancestor threads, where problematically it can't be caught.
Let's say you want Ctrl-C responsiveness to be 0.5 seconds, but you only want to repeat some actual work every 5 seconds (work is of random duration as below):
import threading, sys, time, random
blip_counter = 0
work_threads=[]
def repeat_every_5():
global blip_counter
print( f'counter: {blip_counter}')
def real_work():
real_work_duration_s = random.randrange(10)
print( f'do some real work every 5 seconds, lasting {real_work_duration_s} s: starting...')
# in a real world situation stop_event.is_set() can be tested anywhere in the code
for interval_500ms in range( real_work_duration_s * 2 ):
if threading.current_thread().stop_event.is_set():
print( f'stop_event SET!')
return
time.sleep(0.5)
print( f'...real work ends')
# clean up work_threads as appropriate
for work_thread in work_threads:
if not work_thread.is_alive():
print(f'work thread {work_thread} dead, removing from list' )
work_threads.remove( work_thread )
new_work_thread = threading.Thread(target=real_work)
# stop event for graceful shutdown
new_work_thread.stop_event = threading.Event()
work_threads.append(new_work_thread)
# in fact, because a graceful shutdown is now implemented, new_work_thread doesn't have to be daemon
# new_work_thread.daemon = True
new_work_thread.start()
blip_counter += 1
time.sleep( 5 )
timer_thread = threading.Thread(target=repeat_every_5)
timer_thread.daemon = True
timer_thread.start()
repeat_every_5()
while True:
try:
time.sleep( 0.5 )
except KeyboardInterrupt:
print( f'shutting down due to Ctrl-C..., work threads left: {len(work_threads)}')
# trigger stop event for graceful shutdown
for work_thread in work_threads:
if work_thread.is_alive():
print( f'work_thread {work_thread}: setting STOP event')
work_thread.stop_event.set()
print( f'work_thread {work_thread}: joining to main...')
work_thread.join()
print( f'work_thread {work_thread}: ...joined to main')
else:
print( f'work_thread {work_thread} has died' )
sys.exit(1)
This while True:
mechanism looks a bit clunky. But I think, as I say, that currently (Python 3.8.x) KeyboardInterrupt
can only be caught on the main thread.
PS according to my experiments, handling child processes may be easier, in the sense that Ctrl-C will, it seems, in a simple case at least, cause a KeyboardInterrupt
to occur simultaneously in all running processes.