I have a dataframe as follows df["Annotations"]
missense_variant&splice_region_variant
stop_gained&splice_region_variant
splice_acceptor_variant&coding_sequence_variant&intron_variant
splice_donor_variant&splice_acceptor_variant&coding_sequence_variant&5_prime_UTR_variant&intron_variant
missense_variant&NMD_transcript_variant
frameshift_variant&splice_region_variant
splice_acceptor_variant&intron_variant
splice_acceptor_variant&coding_sequence_variant
stop_lost&3_prime_UTR_variant
missense_variant
splice_region_variant
I want to replace or add a new column with priority of orders. Priority is given as
Type Rank
frameshift_variant 1
stop_gained 2
splice_region_variant 3
splice_acceptor_variant 4
splice_donor_variant 5
missense_variant 6
coding_sequence_variant 7
I want to get replace df['Annotations'] or add new column df['Anno_prio'] as:
splice_region_variant
stop_gained
splice_acceptor_variant
splice_acceptor_variant
missense_variant
frameshift_variant
splice_acceptor_variant
splice_acceptor_variant
stop_lost
missense_variant
splice_region_variant
The way I tried was for each term:
df['Annotation']=df['Annotation'].str.replace('missense_variant&splice_region_variant','splice_region_variant')
Are there any other approach to do it using pandas?