I've created a function for plotting the data (see below) using a FacetGrid.
def barplots(data, col, hue, x, y):
sns.set_style(style="darkgrid")
sns.set_context("paper", font_scale=2)
g = sns.FacetGrid(
data,
col=col,
hue=hue,
palette="tab20c",
legend_out=False,
col_wrap=5,
height=15,
)
g.map(sns.catplot, x=x, y=y)
plt.show()
col = "military_civilian"
hue = "sex"
y = "age_at_selection"
x = "nationality_2"
data = nationality_astronauts
barplots(data, col, hue, x, y)
I keep getting ValueError: Could not interpret input 'nationality_2'
Can anybody figure out what's happening here?
nationality_2 | military_civilian | sex | age_at_selection | age_at_selection | age_at_selection | hours_mission | eva_hrs_mission |
---|---|---|---|---|---|---|---|
youngest_selected | oldest_selected | average_age_selected | total_eva_hrs_mission | total_eva_hrs_mission | |||
Canada | civilian | female | 29 | 38 | 32 | 805.75 | 0 |
Canada | civilian | male | 30 | 50 | 37.57142857 | 11036.93 | 24.28 |
Canada | military | male | 29 | 34 | 32.375 | 5410.02 | 22.01 |
China | military | female | 34 | 34 | 34 | 303.5 | 0 |
China | military | male | 32 | 45 | 40.15384615 | 3662 | 0.26 |
France | civilian | female | 28 | 28 | 28 | 614.4 | 0 |
France | civilian | male | 31 | 36 | 33.5 | 5127.63 | 13 |
France | military | male | 27 | 42 | 34.28571429 | 9351.91 | 31.79 |
Germany | civilian | male | 33 | 42 | 35.63636364 | 11584.06 | 12.97 |
Germany | military | male | 34 | 39 | 36.4 | 8953.1 | 14.25 |
Italy | civilian | male | 42 | 52 | 45.33333333 | 854.42 | 0 |
Italy | military | female | 32 | 32 | 32 | 4783.5 | 0 |
Italy | military | male | 33 | 41 | 36 | 17037.25 | 26.88 |
Japan | civilian | female | 29 | 33 | 31.66666667 | 930.8 | 0 |
Japan | civilian | male | 29 | 47 | 32.8125 | 32299.35 | 60.11 |
Japan | military | male | 39 | 39 | 39 | 3400 | 0 |
Rest of world | civilian | female | 26 | 28 | 27 | 450.22 | 0 |
Rest of world | civilian | male | 25 | 46 | 34.9375 | 15783.61 | 105.8 |
Rest of world | military | male | 27 | 42 | 34.64705882 | 17785.96 | 4.72 |
U.S. | civilian | female | 26 | 47 | 32.34065934 | 77986.735 | 180.33 |
U.S. | civilian | male | 25 | 60 | 35.41832669 | 142271.82 | 1266.607 |
U.S. | military | female | 32 | 36 | 33.17647059 | 28430.5 | 105.42 |
U.S. | military | male | 26 | 53 | 34.63807531 | 257079.295 | 1440.23 |
U.S.S.R/Russia | civilian | female | 30 | 32 | 31.6 | 8767 | 3.58 |
U.S.S.R/Russia | civilian | male | 25 | 48 | 33.325 | 227418.79 | 429.52 |
U.S.S.R/Russia | military | female | 25 | 25 | 25 | 70.83 | 0 |
U.S.S.R/Russia | military | male | 23 | 45 | 30.30481283 | 449779.468 | 933.707 |