Using Pytorch, I am trying to implement a network that is using the pre=trained DeepLab ResNet-101. I found two possible methods for using this network:
or
torchvision.models.segmentation.deeplabv3_resnet101(
pretrained=False, progress=True, num_classes=21, aux_loss=None, **kwargs)
However, I might not only need this network's output, but also several inside layers' outputs. Is there a way to access the inner layer outputs using one of these methods?
If not - Is it possible to manually copy the trained resnet's parameters so I can manually recreate it and add those outputs myself? (Hopefully the first option is possible so I won't need to do this)
Thanks!