Searched myself silly, but couldn't find the answer.
Basically I want to import a number of GPS files with the aim to know the location of each GPS at any given time.
I wanted to use Panda's datetime index for this. What I can't seem to figure out is how to align this data.
My result is that each gps starts a new timedate index, I think I'm overwriting my timedata with every import.
I've tried creating a df outside the for loop first, but not with great results.
This is my code:
import pandas as pd
import glob
import os
from datetime import datetime
from pandas import ExcelWriter
pattern = '*.csv'
csv_files = glob.glob(pattern)
frames = []
for csv in csv_files:
with open(csv) as fp:
skip = next(filter(
lambda x: x[1].startswith('trkpt'),
enumerate(fp)
))[0] + 1
df = pd.read_csv(csv, usecols = ['lat','lon','ele','time'], parse_dates=['time'], skiprows=skip)
df['DateTime'] = pd.to_datetime(df['time'], format='%Y-%m-%d %H:%M:%S')
df = df.set_index('DateTime')
df.rename(columns={'lat':'lat' + ' ' + csv,'lon':'lon' + ' ' + csv,'ele':'ele' + ' ' + csv}, inplace=True)
df.drop(['time'], axis=1, inplace=True)
frames.append(df)
df = pd.concat(frames)
df.to_csv('GPS Export.csv', sep=',')
File example
trkpt
ID trksegID lat lon ele time
1 1 -32.46226206 116.0619373 311.6 2021-01-22T01:54:03Z
2 1 -32.46225444 116.0619245 311.6 2021-01-22T01:54:04Z
3 1 -32.46225762 116.0619227 314.97 2021-01-22T01:54:05Z
4 1 -32.46226215 116.0619119 316.41 2021-01-22T01:54:06Z
5 1 -32.46226123 116.0618896 317.85 2021-01-22T01:54:07Z
6 1 -32.46225611 116.0618791 317.85 2021-01-22T01:54:08Z
7 1 -32.46224949 116.0618693 316.41 2021-01-22T01:54:09Z
8 1 -32.46224086 116.0618602 314.97 2021-01-22T01:54:10Z
9 1 -32.46223943 116.0618525 314.49 2021-01-22T01:54:11Z
10 1 -32.46225385 116.0618722 314.49 2021-01-22T01:54:12Z
also got a small problem with the date formatting, but I can live with that