A recent question here had the following code (well, similar to this) to implement a singleton without synchronisation.
public class Singleton {
private Singleton() {}
private static class SingletonHolder {
private static final Singleton INSTANCE = new Singleton();
}
public static Singleton getInstance() {
return SingletonHolder.INSTANCE;
}
}
Now, I think understand what this is doing. Since the instance is static final
, it's built long before any threads will call getInstance()
so there's no real need for synchronisation.
Synchronisation would be needed only if two threads tried to call getInstance()
at the same time (and that method did construction on first call rather than at "static final"
time).
My question is therefore basically: why then would you ever prefer lazy construction of the singleton with something like:
public class Singleton {
private Singleton() {}
private static Singleton instance = null;
public static synchronized Singleton getInstance() {
if (instance == null)
instance = new Singleton();
return instance;
}
}
My only thoughts were that using the static final
method may introduce sequencing issue as in the C++ static initialisation order fiasco.
First off, does Java actually have this problem? I know order within a class is fully specified but does it somehow guarantee consistent order between classes (such as with a class loader)?
Secondly, if the order is consistent, why would the lazy construction option ever be advantageous?