How about this (no Python loops: 750x faster than a list comprehension, when tested on 200k elements):
# note: updated version: faster and more robust to faulty input
def altcat(zeroes, ones, order):
i0 = np.nonzero(order == 0)[0][:len(zeroes)]
i1 = np.nonzero(order == 1)[0][:len(ones)]
z = np.zeros_like(order, dtype=zeroes.dtype)
z[i0] = zeroes[:len(i0)]
z[i1] = ones[:len(i1)]
return z
On your example:
>>> altcat(zeroes=np.array([10,55, 30]), ones=np.array([3,8]),
... order=np.array([0,1,0,1,0]))
array([10, 3, 55, 8, 30])
Speed
# set up
n = 200_000
np.random.seed(0)
order = np.random.randint(0, 2, size=n)
n1 = order.sum()
n0 = n - n1
ones = np.random.randint(100, size=n1)
zeroes = np.random.randint(100, size=n0)
# for comparison, a method proposed elsewhere, based on lists
def altcat_list(zeroes, ones, order):
zeroes = list(zeroes)
ones = list(ones)
return [zeroes.pop(0) if i == 0 else ones.pop(0) for i in order]
Test:
a = %timeit -o altcat(zeroes, ones, order)
# 2.38 ms ± 573 ns per loop (mean ± std. dev. of 7 runs, 100 loops each)
b = %timeit -o altcat_list(zeroes, ones, order)
# 1.84 s ± 1.2 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)
b.average / a.average
# 773.59
Note: I initially tried with n = 1_000_000
, but while altcat
does that in 12.4ms, the list-based version would take forever and I had to stop it.
It seems that the list-based method is worse than O(n)
(100K: 0.4s; 200K: 1.84s; 400K: 10.4s).
Addendum
If you really want to do it with a list comprehension and not in pure numpy
, then at least consider this:
def altcat_list_mod(zeroes, ones, order):
it = [iter(zeroes), iter(ones)]
return [next(it[i]) for i in order]
That's faster than altcat_list()
, but still almost 25x slower than altcat()
:
# on 200k elements
c = %timeit -o altcat_list_mod(zeroes, ones, order)
# 60 ms ± 24.3 µs per loop (mean ± std. dev. of 7 runs, 10 loops each)
c.average / a.average
# 24.93