The main goal I am trying to accomplish is dividing these columns by each other, in python.
Okay so I have this excel file that I import called 'data', data has two columns that I need but they are in different tabs which is not a problem. I get both columns I need and name them the first is called 'city_area' it has 27 numbers in it ( it is printed out 0 - 26) the second column I retrieve is called 'population'. population has a gap at the top of the column before the numbers are listed. I use [6:] to get the data I actually need, population is then printed out and it has 27 numbers as well in it ( but these are listed 6 - 32). When I try to divide these two only the numbers that match up 6 - 26 are divided the rest result is NaN. Both are floats as well, any suggestions?
population1 = (df2['Unnamed: 5'])
population = population1[6:].astype(float)
population
6 664000.0
7 3557000.0
8 619000.0
9 3351000.0
10 13974000.0
11 8238000.0
12 2393000.0
13 3474000.0
14 5750000.0
15 6199000.0
16 2866000.0
17 2304000.0
18 19522000.0
19 7136000.0
20 3595886.0
21 10261856.0
22 8518000.0
23 3041000.0
24 15593000.0
25 3051000.0
26 10984000.0
27 1567000.0
28 405000.0
29 5974000.0
30 41164000.0
31 2007000.0
32 1337000.0
city_area = (df3['SQ_KM'])
city_area
0 8835.000
1 511.000
2 6407.000
3 11400.000
4 693.800
5 313.800
6 5802.000
7 93.380
8 739.000
9 827.141
10 3292.000
11 8096.000
12 330.900
13 1059.400
14 211.500
15 432.170
16 218.000
17 1390.000
18 1260.000
19 169.300
20 496.800
21 34091.000
22 5687.000
23 675.400
24 1520.000
25 181.857
26 2220.000
Name: SQ_KM, dtype: float64
answer = population/city_area
answer
0 NaN
1 NaN
2 NaN
3 NaN
4 NaN
5 NaN
6 114.443295
7 38091.668451
8 837.618403
9 4051.304433
10 4244.835966
11 1017.539526
12 7231.792082
13 3279.214650
14 27186.761229
15 14343.892450
16 13146.788991
17 1657.553957
18 15493.650794
19 42150.029533
20 7238.095813
21 301.013640
22 1497.802005
23 4502.517027
24 10258.552632
25 16776.918128
26 4947.747748
27 NaN
28 NaN
29 NaN
30 NaN
31 NaN
32 NaN
dtype: float64