I am trying to plot the data shown below in a normalised way, in order to have the maximum value on the y-axis equal to 1.
Dataset:
%_F %_M %_C %_D Label
0 0.00 0.00 0.08 0.05 0.0
1 0.00 0.00 0.00 0.14 0.0
2 0.00 0.00 0.10 0.01 1.0
3 0.01 0.01 0.07 0.05 1.0
4 0.00 0.00 0.07 0.14 0.0
6 0.00 0.00 0.07 0.05 0.0
7 0.00 0.00 0.05 0.68 0.0
8 0.00 0.00 0.03 0.09 0.0
9 0.00 0.00 0.04 0.02 0.0
10 0.00 0.00 0.06 0.02 0.0
I tried as follows:
cols_to_norm = ["%_F", "%_M", "%_C", "%_D"]
df[cols_to_norm] = df[cols_to_norm].apply(lambda x: (x - x.min()) / (x.max() - x.min()))
but I am not completely sure about the output. In fact, if a plot as follows
df.pivot_table(index='Label').plot.bar()
I get a different result. I think it is because I am not considering in the first code the index on Label.