Colab code is here:
I am following the docs here to get the result for multiclass prediction
When I train using
#last layer
tf.keras.layers.Dense(2, activation='softmax')
model.compile(optimizer="adam",
loss=tf.keras.losses.CategoricalCrossentropy(),
metrics=[tf.keras.metrics.CategoricalAccuracy(),
tfa.metrics.F1Score(num_classes=2, average='macro')])
I get
144/144 [==] - 8s 54ms/step - loss: 0.0613 - categorical_accuracy: 0.9789 - f1_score: 0.9788 - val_loss: 0.0826 - val_categorical_accuracy: 0.9725 - val_f1_score: 0.9722
When I do:
model.evaluate(val_ds)
I get
16/16 [==] - 0s 15ms/step - loss: 0.0826 - categorical_accuracy: 0.9725 - f1_score: 0.9722
[0.08255868405103683, 0.9725490212440491, 0.9722140431404114]
I would like to use the metric.result
as in the official website. When I load the below code, I get 0.4875028
which is wrong. How can I get the correct predicted_categories
and true_categories
?
metric = tfa.metrics.F1Score(num_classes=2, average='macro')
predicted_categories = model.predict(val_ds)
true_categories = tf.concat([y for x, y in val_ds], axis=0).numpy()
metric.update_state(true_categories, predicted_categories)
result = metric.result()
print(result.numpy())
#0.4875028
Here is how I loaded my data
train_ds = tf.keras.preprocessing.image_dataset_from_directory(
main_folder,
validation_split=0.1,
subset="training",
label_mode='categorical',
seed=123,
image_size=(dim, dim))
val_ds = tf.keras.preprocessing.image_dataset_from_directory(
main_folder,
validation_split=0.1,
subset="validation",
label_mode='categorical',
seed=123,
image_size=(dim, dim))