I have a piece of numpy code that I know works. I know this because I have tested it in my generic case successfully. However, I arrived at the solution after two hours of back and forth referencing the docs and trial and error. I can't grasp how I would know to do this intuitively.
The setup:
a = np.zeros((5,5,3))
The goal: Set to 1 indices 0,1 of axis 1, 0,1 of axis 2, all of axis 3 and indices 3,4 of axis 1, 3,4 of axis 2, all of axis 3
Clearer goal: Set block 1 and 2's first two rows to 1 and block 3 and 4's last two rows to 1
The result:
ax1 =np.array([np.array([0,1]),np.array([3,4])])
ax1 =np.array([x[:,np.newaxis] for x in ax1])
ax2 = np.array([[[0,1]],[[3,4]]])
a[ax1,ax2,:] = 1
a
Output:
array([[[1., 1., 1.],
[1., 1., 1.],
[0., 0., 0.],
[0., 0., 0.],
[0., 0., 0.]],
[[1., 1., 1.],
[1., 1., 1.],
[0., 0., 0.],
[0., 0., 0.],
[0., 0., 0.]],
[[0., 0., 0.],
[0., 0., 0.],
[0., 0., 0.],
[0., 0., 0.],
[0., 0., 0.]],
[[0., 0., 0.],
[0., 0., 0.],
[0., 0., 0.],
[1., 1., 1.],
[1., 1., 1.]],
[[0., 0., 0.],
[0., 0., 0.],
[0., 0., 0.],
[1., 1., 1.],
[1., 1., 1.]]])
I'm inclined to believe I should be able to look at the shape of the matrix in question, the shape of the indices, and the index operation to intuitively know the output. However, I can't put the story together in my head. Like, what's the final shape of the subspace it is altering? How would you explain how this works?
The shapes:
input: (5, 5, 3)
ind1: (2, 2, 1)
ind2: (2, 1, 2)
final_op: input[ind1, ind2, :]