Please add a minimum comment on your thoughts so that I can improve my query. Thank you. -)
I'm trying to train a tf.keras
model with Gradient Accumulation (GA). But I don't want to use it in the custom training loop (like) but customize the .fit()
method by overriding the train_step
.Is it possible? How to accomplish this? The reason is if we want to get the benefit of keras
built-in functionality like fit
, callbacks
, we don't want to use the custom training loop but at the same time if we want to override train_step
for some reason (like GA or else) we can customize the fit
method and still get the leverage of using those built-in functions.
And also, I know the pros of using GA but what are the major cons of using it? Why does it's not come as a default but an optional feature with the framework?
# overriding train step
# my attempt
# it's not appropriately implemented
# and need to fix
class CustomTrainStep(keras.Model):
def __init__(self, n_gradients, *args, **kwargs):
super().__init__(*args, **kwargs)
self.n_gradients = n_gradients
self.gradient_accumulation = [
tf.zeros_like(this_var) for this_var in self.trainable_variables
]
def train_step(self, data):
x, y = data
batch_size = tf.cast(tf.shape(x)[0], tf.float32)
# Gradient Tape
with tf.GradientTape() as tape:
y_pred = self(x, training=True)
loss = self.compiled_loss(
y, y_pred, regularization_losses=self.losses
)
# Calculate batch gradients
gradients = tape.gradient(loss, self.trainable_variables)
# Accumulate batch gradients
accum_gradient = [
(acum_grad+grad) for acum_grad, grad in \
zip(self.gradient_accumulation, gradients)
]
accum_gradient = [
this_grad/batch_size for this_grad in accum_gradient
]
# apply accumulated gradients
self.optimizer.apply_gradients(
zip(accum_gradient, self.trainable_variables)
)
# TODO: reset self.gradient_accumulation
# update metrics
self.compiled_metrics.update_state(y, y_pred)
return {m.name: m.result() for m in self.metrics}
Please, run and check with the following toy setup.
# Model
size = 32
input = keras.Input(shape=(size,size,3))
efnet = keras.applications.DenseNet121(
weights=None,
include_top = False,
input_tensor = input
)
base_maps = keras.layers.GlobalAveragePooling2D()(efnet.output)
base_maps = keras.layers.Dense(
units=10, activation='softmax',
name='primary'
)(base_maps)
custom_model = CustomTrainStep(
n_gradients=10, inputs=[input], outputs=[base_maps]
)
# bind all
custom_model.compile(
loss = keras.losses.CategoricalCrossentropy(),
metrics = ['accuracy'],
optimizer = keras.optimizers.Adam()
)
# data
(x_train, y_train), (_, _) = tf.keras.datasets.mnist.load_data()
x_train = tf.expand_dims(x_train, -1)
x_train = tf.repeat(x_train, 3, axis=-1)
x_train = tf.divide(x_train, 255)
x_train = tf.image.resize(x_train, [size,size]) # if we want to resize
y_train = tf.one_hot(y_train , depth=10)
# customized fit
custom_model.fit(x_train, y_train, batch_size=64, epochs=3, verbose = 1)
Update
I've found that some others also tried to achieve this and ended up with the same issue. One has got some workaround, here, but it's too messy and I think there should be some better approach.
Update 2
The accepted answer (by Mr.For Example) is fine and works well in single strategy. Now, I like to start 2nd bounty to extend it to support multi-gpu, tpu, and with mixed-precision techniques. There are some complications, see details.