0

I am executing the head2head model presented in the Github repo here. When I am running the code using the following command:

./scripts/train/train_on_target.sh Obama head2headDataset

with contents of the train_on_target.sh file as:

target_name=$1
dataset_name=$2

python train.py --checkpoints_dir checkpoints/$dataset_name \
                --target_name $target_name \
                --name head2head_$target_name \
                --dataroot datasets/$dataset_name/dataset \
                --serial_batches

Then I am getting the following error:

Traceback (most recent call last):
  File "train.py", line 108, in <module>
    flow_ref, conf_ref, t_scales, n_frames_D)
  File "/home/nitin/head2head/util/util.py", line 48, in get_skipped_flows
    flow_ref_skipped[s], conf_ref_skipped[s] = flowNet(real_B[s][:,1:], real_B[s][:,:-1])
  File "/home/nitin/anaconda3/envs/head2head/lib/python3.7/site-packages/torch/nn/modules/module.py", line 532, in __call__
    result = self.forward(*input, **kwargs)
  File "/home/nitin/anaconda3/envs/head2head/lib/python3.7/site-packages/torch/nn/parallel/data_parallel.py", line 150, in forward
    return self.module(*inputs[0], **kwargs[0])
  File "/home/nitin/anaconda3/envs/head2head/lib/python3.7/site-packages/torch/nn/modules/module.py", line 532, in __call__
    result = self.forward(*input, **kwargs)
  File "/home/nitin/head2head/models/flownet.py", line 38, in forward
    flow, conf = self.compute_flow_and_conf(input_A, input_B)
  File "/home/nitin/head2head/models/flownet.py", line 55, in compute_flow_and_conf
    flow1 = self.flowNet(data1)
  File "/home/nitin/anaconda3/envs/head2head/lib/python3.7/site-packages/torch/nn/modules/module.py", line 532, in __call__
    result = self.forward(*input, **kwargs)
  File "/home/nitin/head2head/models/flownet2_pytorch/models.py", line 156, in forward
    flownetfusion_flow = self.flownetfusion(concat3)
  File "/home/nitin/anaconda3/envs/head2head/lib/python3.7/site-packages/torch/nn/modules/module.py", line 532, in __call__
    result = self.forward(*input, **kwargs)
  File "/home/nitin/head2head/models/flownet2_pytorch/networks/FlowNetFusion.py", line 62, in forward
    concat0 = torch.cat((out_conv0,out_deconv0,flow1_up),1)
RuntimeError: CUDA out of memory. Tried to allocate 82.00 MiB (GPU 0; 5.80 GiB total capacity; 4.77 GiB already allocated; 73.56 MiB free; 4.88 GiB reserved in total by PyTorch)

I have checked the batch size in the file options/base_options.py. It is already set to 1. How can I solve the above mentioned exception. My system has 6 GB NVIDIA GTX 1660 Super GPU.

Mayank Tiwari
  • 2,974
  • 5
  • 30
  • 52

1 Answers1

1

Data management:

You can try reducing the dataset used for training to check if is a hardware limitation. Moreover, if it is an image dataset, you can reduce the dimensions of the images by reducing the dpi.

Model parameters management:

Another approach is to reduce the number of parameters of your model. The first suggestion would be to change the Dense layer size and then the other neural network hyperparameters.