I have a question about the following code, but i guess applies to different functions. This function computes the maximum path and its length for a DAG, given the Graph, source node, and end node.
To keep track of already computed distances across recursions I use "max_distances_and_paths" variable, and update it on each recursion.
Is it better to keep it as a function parameter (inputed and outputed across recursions) or use a global variable and initialize it outside the function?
How can avoid to have this parameter returned when calling the function externally (i.e it has to be outputed across recursions but I dont care about its value, externally)?
a better way than doing: LongestPath(G, source, end)[0:2] ??
Thanks
# for a DAG computes maximum distance and maximum path nodes sequence (ordered in reverse).
# Recursively computes the paths and distances to edges which are adjacent to the end node
# and selects the maximum one
# It will return a single maximum path (and its distance) even if there are different paths
# with same max distance
# Input {Node 1: adj nodes directed to Node 1 ... Node N: adj nodes directed to Node N}
# Example: {'g': ['r'], 'k': ['g', 'r']})
def LongestPath(G, source, end, max_distances_and_paths=None):
if max_distances_and_paths is None:
max_distances_and_paths = {}
max_path = [end]
distances_list = []
paths_list = []
# return max_distance and max_path from source to current "end" if already computed (i.e.
# present in the dictionary tracking maximum distances and correspondent distances)
if end in max_distances_and_paths:
return max_distances_and_paths[end][0], max_distances_and_paths[end][1], max_distances_and_paths
# base case, when end node equals source node
if source == end:
max_distance = 0
return max_distance, max_path, max_distances_and_paths
# if there are no adjacent nodes directed to end node (and is not the source node, previous case)
# means path is disconnected
if len(G[end]) == 0:
return 0, [0], {"": []}
# for each adjacent node pointing to end node compute recursively its max distance to source node
# and add one to get the distance to end node. Recursively add nodes included in the path
for t in G[end]:
sub_distance, sub_path, max_distances_and_paths = LongestPath(G, source, t, max_distances_and_paths)
paths_list += [[end] + sub_path]
distances_list += [1 + sub_distance]
# compute max distance
max_distance = max(distances_list)
# access the same index where max_distance is, in the list of paths, to retrieve the path
# correspondent to the max distance
index = [i for i, x in enumerate(distances_list) if x == max_distance][0]
max_path = paths_list[index]
# update the dictionary tracking maximum distances and correspondent paths from source
# node to current end node.
max_distances_and_paths.update({end: [max_distance, max_path]})
# return computed max distance, correspondent path, and tracker
return max_distance, max_path, max_distances_and_paths