Here is my code for the implementation of a CRC in python:
import math
divisors = [0b1100000001111, 0b11000000000000101, 0b10001000000100001, 0b1011, 0b10011,0b00000111, 0b11001]
def get_Length(arg):
return math.floor(math.log2(arg)) +1
def CRC(message, type):
print("Message ",bin(message)[2:], hex(message))
# int message_length = get_Length(message);
divisor_length = get_Length(divisors[type])
divisor = divisors[type]
print("Divisor: ",bin(divisor)[2:], hex(divisor))
message = message << (divisor_length-1)
old_message = message
while( (message >> (divisor_length-1)) !=0 ):
ml = get_Length(message)
divisor_copy = divisor << (ml-divisor_length)
message = message ^ divisor_copy
print(bin(message)[2:], hex(message))
print(bin(old_message| message)[2:], hex(old_message|message), end="\n\n")
def main():
CRC(0b1101011011, 4)
CRC(0x34ec, 1)
main()
The first message is from this Wikipedia example and gives the correct result. However the second one (x34ec), which demonstrates a CRC-16 is not giving the correct result (correct result). I'm attaching the output snapshot as well:
It would be appreciative if somebody can shed some light on it.
Thanks in advance.