I'm looking to try to run a moderately expensive function on a large list of inputs, using part of the output of that function as one of its inputs. The code runs as expected, unfortunately it consumes a large amount of memory in the process (just under 22GiB on the heap, just over 1GiB maximum residency). Here is a simplified example of what I mean:
{-# LANGUAGE OverloadedStrings #-}
import Data.List (foldl')
import qualified Data.Text as T
import qualified Data.Text.Lazy as TL
import qualified Data.Text.Lazy.IO as TL
import qualified Data.Text.Lazy.Builder as TB
main :: IO ()
main = TL.putStr $ TB.toLazyText showInts
showInts :: TB.Builder
showInts = foldMap fst shownLines
where
shownLines = map (showInt maxwidth) [0..10^7]
maxwidth = foldl' (\n -> max n . snd) 0 shownLines
showInt :: Int -> Int -> (TB.Builder, Int)
showInt maxwidth n = (builder, len)
where
builder = TB.fromText "This number: "
<> TB.fromText (T.replicate (maxwidth - len) " ") <> thisText
<> TB.singleton '\n'
(thisText, len) = expensiveShow n
expensiveShow :: Int -> (TB.Builder, Int)
expensiveShow n = (TB.fromText text, T.length text)
where text = T.pack (show n)
Note that in the where clause of showInts
, showInt
takes maxwidth
as an argument, where maxwidth
itself depends on the output of running showInt maxwidth
on the whole list.
If, on the other hand, I do the naïve thing and replace the definition of maxwidth
with foldl' max 0 $ map (snd . expensiveShow) [0..10^7]
, then maximum residency falls to just 44KiB. I would hope that performance like this would be achievable without workarounds like precomputing expensiveShow
and then zipping it with the list [0..10^7]
.
I tried consuming the list strictly (using the foldl
package), but this did not improve the situation.
I'm trying to have my cake and eat it too: exploiting laziness, while also making things strict enough that we don't build up a mountain of thunks. Is this possible to do? Or is there a better technique for accomplishing this?