I have the following dataframe:
dep jour incid_hosp incid_rea incid_dc incid_rad
0 01 2020-03-19 1 0 0 0
1 02 2020-03-19 38 8 10 15
2 03 2020-03-19 2 0 0 6
3 04 2020-03-19 1 0 0 1
4 05 2020-03-19 4 0 0 1
... ... ... ... ... ... ...
36052 971 2021-03-10 5 0 2 3
36053 972 2021-03-10 3 0 0 1
36054 973 2021-03-10 1 0 0 5
36055 974 2021-03-10 14 2 1 9
36056 976 2021-03-10 8 0 0 13
What I wish to do is to be able to sum each value in the column 'incid_hosp' for each date. Basically the data is broken down into regions within France, but I only care about the aggregate. What would be the best way to do this?
I tried the following:
cur_date = datetime.today().strftime('%Y-%m-%d')
first_date = '2020-03-19'
date_range = pd.date_range(start=first_date, end=cur_date)
new_fra = pd.DataFrame(index=date_range)
new_fra.reset_index(inplace=True)
for i in date_range:
new_fra.loc[i] = df_fra[df_fra.jour == i].sum(df_fra['incid_hosp'])