I am looking through a DataFrame with different kinds of data whose usefulness I'm trying to evaluate. So I am looking at each column and check the kind of data it is. E.g.
print(extract_df['Auslagenersatz'])
For some I get responses like this:
0 NaN
1 NaN
2 NaN
3 NaN
4 NaN
..
263 NaN
264 NaN
265 NaN
266 NaN
267 NaN
I would like to check whether that column contains any information at all so what I am looking for is something like
s = extract_df['Auslagenersatz']
print(s.loc[s == True])
where I am assuming that NaN is interpreted as False in the same way an empty set is. I would like it to return only those elements of the series that satisfy this condition (being not empty). The code above does not work however, as I get an empty set even for columns that I know have non-NaN entries.
I oriented myself with this post How to select rows from a DataFrame based on column values
but I can't figure where I'm going wrong or how to do this instead. The Problem comes up often so any help is well appreciated.