I notice some people fail to suppress sklearn warnings even with warnings handling. Interestingly, I experience a similar scenario only when n_job=-1
.
Warning suppression works fine when n_job=1
. Is there a way for n_job=-1
?
import numpy as np
import sklearn.linear_model
import sklearn.model_selection
from sklearn.exceptions import ConvergenceWarning
import warnings
warnings.filterwarnings(action='ignore', category=ConvergenceWarning)
clf = sklearn.linear_model.ElasticNet(max_iter=1000000)
grid = {'alpha': np.logspace(-5, 0, 25), 'l1_ratio': np.logspace(-5, 0, 25)}
grid_search = sklearn.model_selection.GridSearchCV(clf, grid, cv=5, n_jobs=-1, verbose=1)
grid_search.fit(X, y)