If all A[i] > 0
, you can do this in O(n lg n)
: precompute partial sums S[i]
, then binary search S
for S[i] + M
. For instance:
def binary_search(L, x):
def _binary_search(lo, hi):
if lo >= hi: return lo
mid = lo + (hi-lo)/2
if x < L[mid]:
return _binary_search(lo, mid)
return _binary_search(mid+1, hi)
return _binary_search(0, len(L))
A = [1, 2, 3, 2, 1]
M = 4
S = [A[0]]
for a in A[1:]:
S.append(S[-1] + a)
maxsum = 0
for i, s in enumerate(S):
j = binary_search(S, s + M)
if j == len(S):
break
sum = S[j-1] - S[i]
maxsum = max(sum, maxsum)
print maxsum
EDIT: as atuls correctly points out, the binary search is overkill; since S is increasing, we can just keep track of j each iteration and advance from there.