I have to take the coordinates of the vertices of a triangle from the user and tell if it is a right-angled triangle or not. I'm using Pythagoras Theorem to Find out i.e. h * h = b * b + p * p
But surprisingly this doesn't work for some specific right-angled triangles. Here is one such Triangle:
Vertex A: (x, y) = (1, 3)
Vertex B: (x, y) = (1, 1)
Vertex C: (x, y) = (5, 1)
It calculates perfectly, which I figured out by printing the calculation, but still doesn't work.
Then I tried by using sqrt()
function from the cmath
library this way:
h = sqrt(b * b + p * p)
Logically it is the same, but it worked.
I want to understand, why the earlier method is not working?
Here is a simplified version of My Code:
#include <iostream>
#include <cmath>
using namespace std;
class Vertex {
double x, y;
public:
void take_input(char obj) {
cout << endl << " Taking Coordinates of Vertex " << obj << ": " << endl;
cout << " Enter the x component: ";
cin >> x;
cout << " Enter the y component: ";
cin >> y;
}
double distance(Vertex p) {
double dist = sqrt((x-p.x)*(x-p.x) + (y-p.y)*(y-p.y));
return dist;
}
};
class Triangle {
Vertex a, b, c;
public:
void take_inp(string obj) {
cout << endl << "Taking Vertices of the Triangle " << obj << ": " << endl;
cout << " Verteces should be in a counter clockwise order (as per convention)." << endl;
a.take_input('A');
b.take_input('B');
c.take_input('C');
}
void is_rt_ang() {
double h = a.distance(c)*a.distance(c);
double bp = a.distance(b)*a.distance(b) + b.distance(c)*b.distance(c);
/*
// Strangely this attempt works which is logically the same:
double h = a.distance(c);
double bp = sqrt(a.distance(b)*a.distance(b) + b.distance(c)*b.distance(c));
*/
if (h == bp) {
cout << "Angle is 90" << endl;
cout << h << " = " << bp << endl;
cout << "It is Right-Angled" << endl;
}
else {
cout << "Angle is not 90!" << endl;
cout << h << " != " << bp << endl;
cout << "It is Not a Right-Angled" << endl;
}
}
};
int main()
{
Triangle tri1, tri2;
tri1.take_inp("tri1");
tri1.is_rt_ang();
return 0;
}