I have a code that tries to solve an integral of a function in a given interval numerically, using the method of Trapezoidal Rule (see the formula in Trapezoid method ), now, for the function sin(x) in the interval [-pi/2.0,pi/2.0], the integral is waited to be zero.
In this case, I take the number of partitions 'n' equal to 4. The problem is that when I have pi with 20 decimal places it is zero, with 14 decimal places it is 8.72e^(-17), then with 11 decimal places, it is zero, with 8 decimal places it is 8.72e^(-17), with 3 decimal places it is zero. I mean, the integral is zero or a number near zero for different approximations of pi, but it doesn't have a clear trend.
I would appreciate your help in understanding why this happens. (I did run it in Dev-C++).
#include <iostream>
#include <math.h>
using namespace std;
#define pi 3.14159265358979323846
//Pi: 3.14159265358979323846
double func(double x){
return sin(x);
}
int main() {
double x0 = -pi/2.0, xf = pi/2.0;
int n = 4;
double delta_x = (xf-x0)/(n*1.0);
double sum = (func(x0)+func(xf))/2.0;
double integral;
for (int k = 1; k<n; k++){
// cout<<"func: "<<func(x0+(k*delta_x))<<" "<<"last sum: "<<sum<<endl;
sum = sum + func(x0+(k*delta_x));
// cout<<"func + last sum= "<<sum<<endl;
}
integral = delta_x*sum;
cout<<"The value for the integral is: "<<integral<<endl;
return 0;
}