Since I couldn't obtain an answer for using R, I attempted with python (solution by other post but with an increased number of stacks) and achieved what I want, where I can rotate and view the bar chart at different angles.
import pandas as pd
import matplotlib.pyplot as plt
#from mpl_toolkits.mplot3d import Axes3D
from mpl_toolkits.mplot3d import axes3d
import numpy as np
# Set plotting style
plt.style.use('seaborn-white')
dz=[]
z0 = np.array([ 1., 3., 11., 8., 7., 6., 6., 6., 5., 4.,
3., 11., 10., 1., 1., 7.])
dz.append(z0)
z1 =[ 5., 5., 8., 4., 2., 0., 0., 0., 0., 0., 0.,
1., 6., 5., 7., 2.]
dz.append(z1)
z2 =[ 15., 5., 8., 2., 0., 0., 0., 0., 0., 0., 0.,
3., 5., 2., 7., 2.]
dz.append(z2)
_zpos = z0*0
xlabels = pd.Index(['X01', 'X02', 'X03', 'X04'], dtype='object')
ylabels = pd.Index(['Y01', 'Y02', 'Y03', 'Y04'], dtype='object')
x = np.arange(xlabels.shape[0])
y = np.arange(ylabels.shape[0])
x_M, y_M = np.meshgrid(x, y, copy=False)
fig = plt.figure(figsize=(7, 7))
ax = fig.add_subplot(111, projection='3d')
# Making the intervals in the axes match with their respective entries
ax.w_xaxis.set_ticks(x + 0.5/2.)
ax.w_yaxis.set_ticks(y + 0.5/2.)
# Renaming the ticks as they were before
ax.w_xaxis.set_ticklabels(xlabels)
ax.w_yaxis.set_ticklabels(ylabels)
# Labeling the 3 dimensions
ax.set_xlabel('X label')
ax.set_ylabel('Y label')
ax.set_zlabel('Z label')
# Choosing the range of values to be extended in the set colormap
values = np.linspace(0.2, 1., x_M.ravel().shape[0])
# Selecting an appropriate colormap
colors = ['#FFC04C', 'blue', '#3e9a19',
'#599be5','#bf666f','#a235bf','#848381','#fb90d6','#fb9125']
# Increase the number of segment to 3 by changing the X in 'range(X)' to 3.
for i in range(3):
ax.bar3d(x_M.ravel(), y_M.ravel(), _zpos, dx=0.3, dy=0.3, dz=dz[i],
color=colors[i])
_zpos += dz[i]
#plt.gca().invert_xaxis()
#plt.gca().invert_yaxis()
Segment1_proxy = plt.Rectangle((0, 0), 1, 1, fc="#FFC04C90")
Segment2_proxy = plt.Rectangle((0, 0), 1, 1, fc="blue")
ax.legend([Segment1_proxy,
Segment2_proxy],['Segment1',
'Segment2',
])
plt.show()