I am doing some coding in R and have encountered an issue.
I have a data set where participants were given the same question(s) a few different times. There is one id variable, a time variable which records which instance we are dealing with, and one outcome variable.
I did a little research and found a post similar to what I am trying to do.
Turning one row into multiple rows in r
I am trying to do the exact opposite thing of what is being done in this post.
I created this small code to give an idea of what I am dealing with.
A1
id time x
1000 1 1
1000 2 2
1000 3 3
1000 4 4
1001 1 1
1001 2 2
1001 3 3
1001 4 4
What I need to do is reorganize the data set so that each case is on one line and I repeat every X variable multiple times (x1 would be the first time point, x2 would be the second time point, etc). Here is a sample code of what I would like the final data frame to look like.
B1
id x1 x2 x3 x4
1000 1 2 3 4
1001 1 2 3 4
There are a few nuances in my code that make this situation really tricking. Some participants have many more x entries than other participants (some participants only have 1 or 2 different x values while others have 7 or 8). There is some missing data as well.
I have approached the problem in a few ways with no luck. I am not sure what the best way is to handle this situation. The attempts I have tried either require a lot of code, usually the same basic code repeating multiple times, or code that doesn't work. Here is what I have tried.
I tried to use a for loop. I tried to create a new variable to identify the participant by id and then identify the first time they are doing the survey, then I use the first x value. I would then repeat this for each time point(for time 2- find the second x value for a given participant, for time 3- find the third x value for a given participant, etc.). As I have currently anywhere from 1 to 10 time points, this involves a lot of for loops. Because some people don't have an 6 or 7th time, the code often doesn't run. Here is an example of the for loop I have tried.
for (i in A1$id) {
temp.txt<- paste (
c ("A1$x1 [A$id ==", i," & A$time == 1] <- A1$x"
), collapse = "")
eval (parse(text = temp.txt))
}
I tried to subset the data for each time point, then merge the data together at the end. If I try this, I have missing data, and I also encounter issues with variables names no longer being accepted (I think because the names are similar, R has an issue with renaming everything). Here is an example of what that code looks like.
t1 <- subset (A1, A$time == 1)
t2 <- subset (A1, A$time == 2)
t3 <- subset (A1, A$time == 3)
t4 <- subset (A1, A$time == 4)
Z1 <- merge (t1, t2, by = "id")
Z2 <- merge (Z1, t3, by = "id")
Z3 <- merge (Z2, t4, by = "id")
Is there a different/easier way to approach this issue? Thanks, I really appreciate it.