I am trying to sort an array by the sum and receiving this error.
from this approved question, Ordering coordinates from top left to bottom right
a = sorted(keypoints_to_search, key=lambda p: (p.pt[0]) + (p.pt[1]))[0] # find upper left point
ValueError: The truth value of an array with more than one element is ambiguous. Use a.any() or a.all()
Anyone know how to resolve it? The debugger values look good it seems, all have values.
00 = {ndarray: (144, 1, 2)} [[[408 414]],, [[407 415]],, [[404 415]],, [[403 416]],, [[402 416]],, [[401 417]],, [[400 417]],, [[398 419]],, [[398 420]],, [[396 422]],, [[396 424]],, [[395 425]],, [[395 435]],, [[396 436]],, [[396 438]],, [[397 439]],, [[397 440]],, [[401 444]],, [[402 444]],, [[403 445]],, [[406 445]],, [[407 446]],, [[417 446]],, [[418 445]],, [[424 445]],, [[425 446]],, [[436 446]],, [[437 445]],, [[445 445]],, [[446 446]],, [[448 446]],, [[449 445]],, [[453 445]],, [[455 443]],, [[456 443]],, [[456 442]],, [[457 441]],, [[459 441]],, [[460 442]],, [[460 443]],, [[461 444]],, [[462 444]],, [[463 445]],, [[466 445]],, [[467 446]],, [[469 446]],, [[470 445]],, [[474 445]],, [[476 443]],, [[477 443]],, [[478 442]],, [[480 442]],, [[483 445]],, [[493 445]],, [[494 444]],, [[496 444]],, [[497 445]],, [[498 445]],, [[499 446]],, [[535 446]],, [[536 445]],, [[540 445]],, [[541 446]],, [[560 446]],, [[561 445]],, [[562 445]],, [[562 441]],, [[560 439]],, [[560 427]],, [[559 426]],, [[559 425]],, [[557...
01 = {ndarray: (46, 1, 2)} [[[105 414]],, [[104 415]],, [[ 96 415]],, [[ 95 416]],, [[ 93 416]],, [[ 92 417]],, [[ 91 417]],, [[ 86 422]],, [[ 86 423]],, [[ 85 424]],, [[ 85 426]],, [[ 84 427]],, [[ 84 435]],, [[ 83 436]],, [[ 83 447]],, [[ 84 448]],, [[ 84 456]],, [[ 85 457]],, [[ 85 459]],, [[ 86 460]],, [[ 86 461]],, [[ 92 467]],, [[ 95 467]],, [[ 96 468]],, [[225 468]],, [[226 467]],, [[228 467]],, [[231 464]],, [[231 463]],, [[233 461]],, [[233 460]],, [[234 459]],, [[234 457]],, [[235 456]],, [[235 427]],, [[234 426]],, [[234 424]],, [[233 423]],, [[233 422]],, [[228 417]],, [[227 417]],, [[226 416]],, [[224 416]],, [[223 415]],, [[215 415]],, [[214 414]]]
02 = {ndarray: (222, 1, 2)} [[[311 383]],, [[309 385]],, [[309 386]],, [[308 387]],, [[308 389]],, [[307 390]],, [[307 391]],, [[306 392]],, [[306 393]],, [[305 394]],, [[305 395]],, [[304 396]],, [[304 397]],, [[303 398]],, [[303 399]],, [[302 400]],, [[302 401]],, [[301 402]],, [[301 403]],, [[300 404]],, [[300 405]],, [[299 406]],, [[299 407]],, [[298 408]],, [[298 409]],, [[297 410]],, [[297 411]],, [[295 413]],, [[295 414]],, [[294 415]],, [[294 416]],, [[292 418]],, [[292 419]],, [[290 421]],, [[290 422]],, [[288 424]],, [[288 425]],, [[286 427]],, [[286 428]],, [[284 430]],, [[284 431]],, [[283 432]],, [[283 433]],, [[281 435]],, [[281 436]],, [[279 438]],, [[279 439]],, [[277 441]],, [[277 442]],, [[275 444]],, [[275 445]],, [[273 447]],, [[273 448]],, [[271 450]],, [[271 451]],, [[270 452]],, [[270 453]],, [[269 454]],, [[269 461]],, [[270 462]],, [[270 463]],, [[271 463]],, [[272 464]],, [[278 464]],, [[279 463]],, [[280 463]],, [[280 462]],, [[281 461]],, [[281 460]],, [[282 459]],, [[282 458]],, [[283...
03 = {ndarray: (57, 1, 2)} [[[ 25 329]],, [[ 24 330]],, [[ 23 330]],, [[ 23 331]],, [[ 22 332]],, [[ 22 337]],, [[ 21 338]],, [[ 21 342]],, [[ 22 343]],, [[ 22 351]],, [[ 23 352]],, [[ 23 396]],, [[ 24 397]],, [[ 24 399]],, [[ 26 399]],, [[ 27 400]],, [[ 83 400]],, [[ 84 399]],, [[ 85 399]],, [[ 85 397]],, [[ 86 396]],, [[ 86 394]],, [[ 85 393]],, [[ 85 391]],, [[ 77 383]],, [[ 76 383]],, [[ 72 379]],, [[ 71 379]],, [[ 67 375]],, [[ 65 375]],, [[ 64 374]],, [[ 63 374]],, [[ 61 372]],, [[ 61 371]],, [[ 60 370]],, [[ 60 354]],, [[ 62 352]],, [[ 62 350]],, [[ 63 349]],, [[ 63 348]],, [[ 68 343]],, [[ 68 342]],, [[ 69 341]],, [[ 69 337]],, [[ 68 336]],, [[ 68 335]],, [[ 67 334]],, [[ 65 334]],, [[ 64 333]],, [[ 58 333]],, [[ 57 332]],, [[ 49 332]],, [[ 48 331]],, [[ 44 331]],, [[ 43 330]],, [[ 38 330]],, [[ 37 329]]]
04 = {ndarray: (174, 1, 2)} [[[629 305]],, [[626 308]],, [[626 309]],, [[606 329]],, [[605 329]],, [[593 341]],, [[592 341]],, [[587 346]],, [[586 346]],, [[580 352]],, [[579 352]],, [[568 363]],, [[568 368]],, [[569 368]],, [[570 369]],, [[573 369]],, [[574 370]],, [[576 370]],, [[577 371]],, [[579 371]],, [[580 372]],, [[582 372]],, [[583 373]],, [[585 373]],, [[586 374]],, [[588 374]],, [[589 375]],, [[591 375]],, [[592 376]],, [[594 376]],, [[595 377]],, [[597 377]],, [[598 378]],, [[600 378]],, [[601 379]],, [[603 379]],, [[604 380]],, [[606 380]],, [[607 381]],, [[609 381]],, [[610 382]],, [[612 382]],, [[613 383]],, [[616 383]],, [[617 384]],, [[620 384]],, [[621 385]],, [[624 385]],, [[625 386]],, [[628 386]],, [[629 387]],, [[632 387]],, [[633 388]],, [[635 388]],, [[636 389]],, [[638 389]],, [[639 390]],, [[641 390]],, [[642 391]],, [[644 391]],, [[645 392]],, [[647 392]],, [[648 393]],, [[650 393]],, [[651 394]],, [[653 394]],, [[654 395]],, [[656 395]],, [[657 396]],, [[659 396]],, [[660 397]],, [[662...
05 = {ndarray: (251, 1, 2)} [[[595 283]],, [[594 284]],, [[594 285]],, [[593 286]],, [[593 287]],, [[592 288]],, [[590 288]],, [[589 289]],, [[586 289]],, [[585 290]],, [[582 290]],, [[581 291]],, [[578 291]],, [[577 292]],, [[574 292]],, [[573 293]],, [[570 293]],, [[569 294]],, [[567 294]],, [[566 295]],, [[563 295]],, [[562 296]],, [[559 296]],, [[558 297]],, [[555 297]],, [[554 298]],, [[553 298]],, [[552 299]],, [[550 299]],, [[549 300]],, [[548 300]],, [[547 301]],, [[545 301]],, [[544 302]],, [[542 302]],, [[541 303]],, [[540 303]],, [[539 304]],, [[537 304]],, [[536 305]],, [[535 305]],, [[534 306]],, [[532 306]],, [[531 307]],, [[530 307]],, [[529 308]],, [[527 308]],, [[526 309]],, [[525 309]],, [[524 310]],, [[522 310]],, [[521 311]],, [[520 311]],, [[519 312]],, [[517 312]],, [[516 313]],, [[514 313]],, [[513 314]],, [[512 314]],, [[511 315]],, [[509 315]],, [[508 316]],, [[507 316]],, [[506 317]],, [[504 317]],, [[503 318]],, [[502 318]],, [[501 319]],, [[499 319]],, [[498 320]],, [[497 320]],, [[496...
06 = {ndarray: (188, 1, 2)} [[[253 274]],, [[252 275]],, [[251 275]],, [[250 276]],, [[249 276]],, [[248 277]],, [[247 277]],, [[246 278]],, [[245 278]],, [[244 279]],, [[242 279]],, [[241 280]],, [[240 280]],, [[239 281]],, [[237 281]],, [[236 282]],, [[235 282]],, [[234 283]],, [[233 283]],, [[232 284]],, [[230 284]],, [[229 285]],, [[228 285]],, [[227 286]],, [[225 286]],, [[224 287]],, [[223 287]],, [[222 288]],, [[221 288]],, [[220 289]],, [[218 289]],, [[217 290]],, [[216 290]],, [[215 291]],, [[214 291]],, [[213 292]],, [[211 292]],, [[210 293]],, [[209 293]],, [[208 294]],, [[206 294]],, [[205 295]],, [[204 295]],, [[203 296]],, [[201 296]],, [[200 297]],, [[199 297]],, [[198 298]],, [[197 298]],, [[196 299]],, [[194 299]],, [[193 300]],, [[192 300]],, [[191 301]],, [[190 301]],, [[189 302]],, [[187 302]],, [[186 303]],, [[185 303]],, [[184 304]],, [[182 304]],, [[181 305]],, [[180 305]],, [[179 306]],, [[178 306]],, [[177 307]],, [[175 307]],, [[174 308]],, [[173 308]],, [[172 309]],, [[170 309]],, [[169...
07 = {ndarray: (102, 1, 2)} [[[383 241]],, [[382 242]],, [[381 242]],, [[381 243]],, [[380 244]],, [[380 263]],, [[379 264]],, [[379 274]],, [[378 275]],, [[378 284]],, [[377 285]],, [[377 291]],, [[376 292]],, [[376 295]],, [[375 296]],, [[375 309]],, [[376 310]],, [[376 315]],, [[375 316]],, [[375 334]],, [[374 335]],, [[374 340]],, [[373 341]],, [[373 344]],, [[372 345]],, [[372 347]],, [[371 348]],, [[371 351]],, [[370 352]],, [[370 354]],, [[369 355]],, [[369 357]],, [[368 358]],, [[368 360]],, [[367 361]],, [[367 366]],, [[366 367]],, [[366 374]],, [[365 375]],, [[365 381]],, [[364 382]],, [[364 391]],, [[365 392]],, [[365 393]],, [[367 395]],, [[367 396]],, [[369 398]],, [[369 399]],, [[372 402]],, [[373 402]],, [[374 403]],, [[378 403]],, [[379 402]],, [[380 402]],, [[381 401]],, [[381 400]],, [[382 399]],, [[382 395]],, [[381 394]],, [[381 392]],, [[379 390]],, [[379 389]],, [[377 387]],, [[377 377]],, [[378 376]],, [[378 370]],, [[379 369]],, [[379 365]],, [[380 364]],, [[380 362]],, [[381 361]],, [[381...
08 = {ndarray: (255, 1, 2)} [[[331 234]],, [[327 238]],, [[326 238]],, [[320 244]],, [[319 244]],, [[310 253]],, [[309 253]],, [[307 255]],, [[306 255]],, [[303 258]],, [[302 258]],, [[299 261]],, [[298 261]],, [[296 263]],, [[295 263]],, [[294 264]],, [[293 264]],, [[290 267]],, [[289 267]],, [[287 269]],, [[286 269]],, [[284 271]],, [[284 273]],, [[285 274]],, [[285 275]],, [[299 275]],, [[300 276]],, [[304 276]],, [[305 277]],, [[305 280]],, [[304 281]],, [[304 282]],, [[303 283]],, [[303 284]],, [[302 285]],, [[302 286]],, [[301 287]],, [[301 289]],, [[300 290]],, [[300 291]],, [[299 292]],, [[299 293]],, [[298 294]],, [[298 295]],, [[297 296]],, [[297 298]],, [[296 299]],, [[296 300]],, [[295 301]],, [[295 302]],, [[294 303]],, [[294 304]],, [[293 305]],, [[293 307]],, [[292 308]],, [[292 309]],, [[291 310]],, [[291 311]],, [[290 312]],, [[290 313]],, [[289 314]],, [[289 316]],, [[288 317]],, [[288 318]],, [[287 319]],, [[287 320]],, [[286 321]],, [[286 322]],, [[285 323]],, [[285 325]],, [[284 326]],, [[284...
09 = {ndarray: (95, 1, 2)} [[[433 223]],, [[432 224]],, [[432 237]],, [[431 238]],, [[431 243]],, [[430 244]],, [[430 266]],, [[428 268]],, [[428 269]],, [[425 272]],, [[425 273]],, [[423 275]],, [[423 276]],, [[420 279]],, [[420 280]],, [[418 282]],, [[418 283]],, [[416 285]],, [[416 286]],, [[415 287]],, [[415 288]],, [[413 290]],, [[413 291]],, [[412 292]],, [[412 293]],, [[410 295]],, [[410 302]],, [[411 303]],, [[413 303]],, [[414 304]],, [[420 304]],, [[421 305]],, [[427 305]],, [[428 306]],, [[443 306]],, [[444 307]],, [[446 307]],, [[447 308]],, [[456 308]],, [[456 304]],, [[455 304]],, [[451 300]],, [[451 299]],, [[449 297]],, [[449 294]],, [[448 293]],, [[448 287]],, [[450 285]],, [[450 284]],, [[451 283]],, [[451 281]],, [[452 280]],, [[452 279]],, [[453 278]],, [[453 277]],, [[454 276]],, [[454 274]],, [[455 273]],, [[455 272]],, [[457 270]],, [[457 268]],, [[460 265]],, [[460 264]],, [[474 250]],, [[476 250]],, [[477 249]],, [[478 249]],, [[480 247]],, [[481 247]],, [[481 241]],, [[480 240]],, [[477...
10 = {ndarray: (4, 1, 2)} [[[457 203]],, [[457 208]],, [[463 208]],, [[463 203]]]
11 = {ndarray: (12, 1, 2)} [[[561 194]],, [[560 195]],, [[558 195]],, [[558 197]],, [[557 198]],, [[557 225]],, [[558 226]],, [[558 228]],, [[711 228]],, [[711 195]],, [[709 195]],, [[708 194]]]
12 = {ndarray: (108, 1, 2)} [[[255 165]],, [[254 166]],, [[251 166]],, [[250 167]],, [[248 167]],, [[247 168]],, [[245 168]],, [[244 169]],, [[242 169]],, [[240 171]],, [[239 171]],, [[238 172]],, [[237 172]],, [[235 174]],, [[234 174]],, [[233 175]],, [[232 175]],, [[231 176]],, [[230 176]],, [[228 178]],, [[227 178]],, [[225 180]],, [[224 180]],, [[223 181]],, [[222 181]],, [[220 183]],, [[219 183]],, [[218 184]],, [[217 184]],, [[214 187]],, [[213 187]],, [[210 190]],, [[209 190]],, [[206 193]],, [[205 193]],, [[202 196]],, [[201 196]],, [[199 198]],, [[198 198]],, [[196 200]],, [[196 201]],, [[194 203]],, [[194 204]],, [[192 206]],, [[192 207]],, [[189 210]],, [[189 211]],, [[186 214]],, [[186 215]],, [[185 216]],, [[185 226]],, [[186 227]],, [[186 228]],, [[187 229]],, [[187 230]],, [[188 231]],, [[188 232]],, [[193 237]],, [[227 237]],, [[228 236]],, [[232 236]],, [[233 235]],, [[236 235]],, [[237 234]],, [[238 234]],, [[239 233]],, [[240 233]],, [[241 232]],, [[242 232]],, [[243 231]],, [[244 231]],, [[247...
13 = {ndarray: (405, 1, 2)} [[[186 132]],, [[185 133]],, [[183 133]],, [[182 134]],, [[181 134]],, [[179 136]],, [[178 136]],, [[177 137]],, [[176 137]],, [[174 139]],, [[173 139]],, [[172 140]],, [[171 140]],, [[170 141]],, [[169 141]],, [[167 143]],, [[166 143]],, [[165 144]],, [[164 144]],, [[163 145]],, [[162 145]],, [[160 147]],, [[159 147]],, [[158 148]],, [[157 148]],, [[155 150]],, [[154 150]],, [[154 152]],, [[155 153]],, [[155 156]],, [[157 158]],, [[160 158]],, [[161 157]],, [[163 157]],, [[164 156]],, [[165 156]],, [[167 154]],, [[168 154]],, [[169 153]],, [[170 153]],, [[172 151]],, [[175 151]],, [[176 152]],, [[176 155]],, [[175 156]],, [[175 157]],, [[174 158]],, [[174 159]],, [[173 160]],, [[173 162]],, [[172 163]],, [[172 164]],, [[171 165]],, [[171 166]],, [[170 167]],, [[170 169]],, [[169 170]],, [[169 171]],, [[168 172]],, [[168 173]],, [[167 174]],, [[167 175]],, [[166 176]],, [[166 178]],, [[165 179]],, [[165 180]],, [[164 181]],, [[164 182]],, [[163 183]],, [[163 185]],, [[162 186]],, [[162...
14 = {ndarray: (200, 1, 2)} [[[ 71 125]],, [[ 69 127]],, [[ 68 127]],, [[ 62 133]],, [[ 61 133]],, [[ 58 136]],, [[ 57 136]],, [[ 54 139]],, [[ 53 139]],, [[ 51 141]],, [[ 50 141]],, [[ 48 143]],, [[ 47 143]],, [[ 46 144]],, [[ 45 144]],, [[ 43 146]],, [[ 42 146]],, [[ 41 147]],, [[ 40 147]],, [[ 39 148]],, [[ 38 148]],, [[ 37 149]],, [[ 36 149]],, [[ 35 150]],, [[ 33 150]],, [[ 32 151]],, [[ 31 151]],, [[ 30 152]],, [[ 28 152]],, [[ 27 153]],, [[ 26 153]],, [[ 24 155]],, [[ 23 155]],, [[ 22 156]],, [[ 21 156]],, [[ 17 160]],, [[ 17 161]],, [[ 16 162]],, [[ 16 168]],, [[ 17 169]],, [[ 17 170]],, [[ 20 173]],, [[ 21 173]],, [[ 22 174]],, [[ 23 174]],, [[ 24 175]],, [[ 31 175]],, [[ 32 176]],, [[ 52 176]],, [[ 53 175]],, [[ 60 175]],, [[ 61 176]],, [[ 61 178]],, [[ 60 179]],, [[ 59 179]],, [[ 56 182]],, [[ 55 182]],, [[ 48 189]],, [[ 47 189]],, [[ 41 195]],, [[ 40 195]],, [[ 34 201]],, [[ 33 201]],, [[ 28 206]],, [[ 27 206]],, [[ 24 209]],, [[ 23 209]],, [[ 21 211]],, [[ 20 211]],, [[ 19 212]],, [[ 18 212]],, [[ 17...
15 = {ndarray: (281, 1, 2)} [[[431 91]],, [[430 92]],, [[430 94]],, [[431 95]],, [[431 98]],, [[433 100]],, [[433 101]],, [[434 102]],, [[434 103]],, [[436 105]],, [[436 106]],, [[437 107]],, [[437 108]],, [[439 110]],, [[439 111]],, [[440 112]],, [[440 113]],, [[441 114]],, [[441 115]],, [[443 117]],, [[443 118]],, [[444 119]],, [[444 120]],, [[446 122]],, [[446 123]],, [[447 124]],, [[447 125]],, [[448 126]],, [[448 127]],, [[450 129]],, [[450 130]],, [[451 131]],, [[451 132]],, [[453 134]],, [[453 135]],, [[454 136]],, [[454 137]],, [[455 138]],, [[455 139]],, [[457 141]],, [[457 142]],, [[458 143]],, [[458 144]],, [[460 146]],, [[460 147]],, [[461 148]],, [[461 149]],, [[462 150]],, [[462 151]],, [[464 153]],, [[464 154]],, [[465 155]],, [[465 156]],, [[467 158]],, [[467 159]],, [[468 160]],, [[468 161]],, [[469 162]],, [[469 163]],, [[471 165]],, [[471 166]],, [[472 167]],, [[472 170]],, [[471 171]],, [[469 171]],, [[468 170]],, [[466 170]],, [[465 169]],, [[464 169]],, [[463 168]],, [[461 168]],, [[460...
16 = {ndarray: (48, 1, 2)} [[[361 47]],, [[360 48]],, [[352 48]],, [[351 49]],, [[349 49]],, [[348 50]],, [[347 50]],, [[342 55]],, [[342 56]],, [[341 57]],, [[341 59]],, [[340 60]],, [[340 68]],, [[339 69]],, [[339 149]],, [[340 150]],, [[340 158]],, [[341 159]],, [[341 161]],, [[342 162]],, [[342 163]],, [[347 168]],, [[348 168]],, [[349 169]],, [[351 169]],, [[352 170]],, [[376 170]],, [[377 169]],, [[379 169]],, [[380 168]],, [[381 168]],, [[386 163]],, [[386 162]],, [[387 161]],, [[387 159]],, [[388 158]],, [[388 60]],, [[387 59]],, [[387 57]],, [[386 56]],, [[386 55]],, [[381 50]],, [[380 50]],, [[379 49]],, [[377 49]],, [[376 48]],, [[368 48]],, [[367 47]]]
17 = {ndarray: (181, 1, 2)} [[[259 20]],, [[259 21]],, [[258 22]],, [[258 24]],, [[257 25]],, [[257 31]],, [[256 32]],, [[256 40]],, [[255 41]],, [[255 44]],, [[254 45]],, [[254 48]],, [[253 49]],, [[253 53]],, [[252 54]],, [[252 58]],, [[251 59]],, [[251 63]],, [[250 64]],, [[250 72]],, [[255 72]],, [[256 71]],, [[257 71]],, [[258 70]],, [[259 70]],, [[260 69]],, [[263 69]],, [[264 68]],, [[267 68]],, [[268 67]],, [[271 67]],, [[272 68]],, [[272 70]],, [[273 71]],, [[273 73]],, [[274 74]],, [[274 76]],, [[275 77]],, [[275 80]],, [[276 81]],, [[276 83]],, [[277 84]],, [[277 86]],, [[278 87]],, [[278 90]],, [[279 91]],, [[279 93]],, [[280 94]],, [[280 96]],, [[281 97]],, [[281 99]],, [[282 100]],, [[282 103]],, [[283 104]],, [[283 106]],, [[284 107]],, [[284 109]],, [[285 110]],, [[285 113]],, [[286 114]],, [[286 116]],, [[287 117]],, [[287 119]],, [[288 120]],, [[288 123]],, [[289 124]],, [[289 126]],, [[290 127]],, [[290 128]],, [[291 129]],, [[291 131]],, [[292...
18 = {ndarray: (12, 1, 2)} [[[ 47 7]],, [[ 46 8]],, [[ 44 8]],, [[ 44 10]],, [[ 43 11]],, [[ 43 113]],, [[ 44 114]],, [[ 44 116]],, [[165 116]],, [[165 8]],, [[163 8]],, [[162 7]]]
19 = {ndarray: (156, 1, 2)} [[[683 5]],, [[679 9]],, [[679 23]],, [[678 24]],, [[678 27]],, [[677 28]],, [[677 30]],, [[676 31]],, [[676 32]],, [[675 33]],, [[675 35]],, [[674 36]],, [[674 38]],, [[673 39]],, [[673 40]],, [[672 41]],, [[672 43]],, [[671 44]],, [[671 45]],, [[670 46]],, [[670 48]],, [[669 49]],, [[669 50]],, [[668 51]],, [[668 53]],, [[667 54]],, [[667 55]],, [[665 57]],, [[662 57]],, [[661 56]],, [[659 56]],, [[658 55]],, [[656 55]],, [[655 54]],, [[653 54]],, [[652 53]],, [[650 53]],, [[649 52]],, [[641 52]],, [[637 56]],, [[637 65]],, [[639 67]],, [[639 68]],, [[653 82]],, [[653 88]],, [[652 89]],, [[652 90]],, [[651 91]],, [[651 93]],, [[650 94]],, [[650 96]],, [[649 97]],, [[649 99]],, [[648 100]],, [[648 102]],, [[647 103]],, [[647 106]],, [[646 107]],, [[646 110]],, [[645 111]],, [[645 113]],, [[644 114]],, [[644 117]],, [[643 118]],, [[643 120]],, [[642 121]],, [[642 125]],, [[641 126]],, [[641 129]],, [[640 130]],, [[640 132]],, [[639...
20 = {ndarray: (170, 1, 2)} [[[555 2]],, [[554 3]],, [[552 3]],, [[551 4]],, [[550 4]],, [[549 5]],, [[547 5]],, [[544 8]],, [[543 8]],, [[542 9]],, [[540 9]],, [[539 10]],, [[537 10]],, [[535 12]],, [[534 12]],, [[532 14]],, [[531 14]],, [[530 15]],, [[529 15]],, [[521 23]],, [[521 29]],, [[522 30]],, [[522 37]],, [[523 38]],, [[523 40]],, [[526 43]],, [[526 46]],, [[527 47]],, [[527 49]],, [[528 50]],, [[528 52]],, [[529 53]],, [[529 56]],, [[530 57]],, [[530 59]],, [[529 60]],, [[528 60]],, [[527 61]],, [[526 61]],, [[525 62]],, [[524 62]],, [[523 63]],, [[514 63]],, [[513 64]],, [[510 64]],, [[509 65]],, [[507 65]],, [[505 67]],, [[505 72]],, [[506 72]],, [[507 73]],, [[510 73]],, [[511 74]],, [[513 74]],, [[514 75]],, [[515 75]],, [[516 76]],, [[519 76]],, [[520 77]],, [[528 77]],, [[530 79]],, [[530 82]],, [[529 83]],, [[529 86]],, [[528 87]],, [[528 92]],, [[527 93]],, [[527 95]],, [[526 96]],, [[526 99]],, [[525 100]],, [[525...
I also tried utilize this, did not work sorted(A, key=sum)
https://stackoverflow.com/a/30541475/15435022