I set up a tensorflow running service with my model, but when I try to do a post request it returns me the following error (get request work):
[nltk_data] Downloading package punkt to /home/viktor/nltk_data...
[nltk_data] Package punkt is already up-to-date!
HBox(children=(FloatProgress(value=1.0, bar_style='info', max=1.0), HTML(value='')))
Truncation was not explicitly activated but `max_length` is provided a specific value, please use `truncation=True` to explicitly truncate examples to max length. Defaulting to 'longest_first' truncation strategy. If you encode pairs of sequences (GLUE-style) with the tokenizer you can select this strategy more precisely by providing a specific strategy to `truncation`.
(3, 20)
Traceback (most recent call last):
File "bert_api.py", line 99, in <module>
res , res2= requests.post('http://3.143.108.46:8501/v1/models/colbert:predict',
File "/home/viktor/documents/miniconda3/lib/python3.8/site-packages/requests/api.py", line 119, in post
return request('post', url, data=data, json=json, **kwargs)
File "/home/viktor/documents/miniconda3/lib/python3.8/site-packages/requests/api.py", line 61, in request
return session.request(method=method, url=url, **kwargs)
File "/home/viktor/documents/miniconda3/lib/python3.8/site-packages/requests/sessions.py", line 516, in request
prep = self.prepare_request(req)
File "/home/viktor/documents/miniconda3/lib/python3.8/site-packages/requests/sessions.py", line 449, in prepare_request
p.prepare(
File "/home/viktor/documents/miniconda3/lib/python3.8/site-packages/requests/models.py", line 317, in prepare
self.prepare_body(data, files, json)
File "/home/viktor/documents/miniconda3/lib/python3.8/site-packages/requests/models.py", line 508, in prepare_body
body = self._encode_params(data)
File "/home/viktor/documents/miniconda3/lib/python3.8/site-packages/requests/models.py", line 97, in _encode_params
for k, vs in to_key_val_list(data):
ValueError: too many values to unpack (expected 2)
This is my code:
res, res2 = requests.post('http://url:port/v1/models/colbert:predict',
data=sentence_input)
print(res.status_code, res.reason)
my data_sentence is an array of arrays:
[array([[1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]],
dtype=int32),
array([[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], dtype=int32]