I apologise if this has already been asked, I have searched for a solution and found similar problems but non that have solved my problem.
I have 2 DataFrames
df2.head()
Location lat lon
0 Albury, Australia -36.080477 146.916280
1 Badgerys Creek, Australia -33.881667 150.744163
2 Cobar, Australia -31.498333 145.834444
3 Coffs Harbour, Australia -30.296241 153.113529
4 Moree, Australia -29.461720 149.840715
df2.shape
(49, 3)
and
df1.info()
RangeIndex: 145460 entries, 0 to 145459
Data columns (total 21 columns):
# Column Non-Null Count Dtype
--- ------ -------------- -----
0 Date 145460 non-null object
1 Location 145460 non-null object
2 MinTemp 143975 non-null float64
3 MaxTemp 144199 non-null float64
4 Rainfall 142199 non-null float64
5 WindGustDir 135134 non-null object
6 WindGustSpeed 135197 non-null float64
7 WindDir9am 134894 non-null object
8 WindDir3pm 141232 non-null object
9 WindSpeed9am 143693 non-null float64
10 WindSpeed3pm 142398 non-null float64
11 Humidity9am 142806 non-null float64
12 Humidity3pm 140953 non-null float64
13 Pressure9am 130395 non-null float64
14 Pressure3pm 130432 non-null float64
15 Temp9am 143693 non-null float64
16 Temp3pm 141851 non-null float64
17 RainToday 142199 non-null object
18 RainTomorrow 142193 non-null object
19 Country 145460 non-null object
20 ApLocation 145460 non-null object
dtypes: float64(12), object(9)
df1 has 49 unique values for location, df2 has those locations with the corresponding longitude and latitude values.
I'd like to map the longitude and latitude values to the corresponding locations in df1.