I am working to implement CUDA for the following code. The first version has been written serially and the second version is written with CUDA. I am sure about its results in serial version. I expect that the second version that I have added CUDA functionality also give me the same result, but it seems that kernel function does not do any thing and it gives me the initial value of u and v. I know due to lack of my experience, the bug may be obvious, but I cannot figure it out. Also, please do not recommend using flatten array, because it is harder for me to understand the indexing in code. First version:
#include <fstream>
#include <iostream>
#include <math.h>
#include <vector>
#include <chrono>
#include <omp.h>
using namespace std;
const int M = 1024;
const int N = 1024;
const double A = 1;
const double B = 3;
const double Du = 5 * pow(10, -5);
const double Dv = 5 * pow(10, -6);
const int Max_Itr = 1000;
const double h = 1.0 / static_cast<double>(M - 1);
const double delta_t = 0.0025;
const double s1 = (Du * delta_t) / pow(h, 2);
const double s2 = (Dv * delta_t) / pow(h, 2);
int main() {
double** u=new double* [M];
double** v=new double* [M];
for (int i=0; i<M; i++){
u[i]=new double [N];
v[i]=new double [N];
}
for (int j = 0; j < M; j++) {
for (int i = 0; i < N;i++) {
u[i][j]=0.02;
v[i][j]=0.02;
}
}
for (int k = 1; k < Max_Itr; k++) {
for (int i = 1; i < N - 1; i++) {
for (int j = 1; j < M - 1; j++) {
u[i][j] = ((1 - (4 * s1)) * u[i][j]) + (s1 * (u[i + 1][j] + u[i - 1][j] + u[i][j + 1] + u[i][j - 1])) +
(A * delta_t) + (delta_t * pow(u[i][j], 2) * v[i][j]) - (delta_t * (B + 1) * u[i][j]);
v[i][j] = ((1 - (4 * s2)) * v[i][j]) + (s2 * (v[i + 1][j] + v[i - 1][j] + v[i][j + 1] + v[i][j - 1])) + (B * delta_t * u[i][j])
- (delta_t * pow(u[i][j], 2) * v[i][j]);
}
}
}
cout<<"u: "<<u[512][512]<<" v: "<<v[512][512]<<endl;
return 0;
}
Second version:
#include <fstream>
#include <iostream>
#include <math.h>
#include <vector>
using namespace std;
#define M 1024
#define N 1024
__global__ void my_kernel(double** v, double** u){
int i= blockIdx.y * blockDim.y + threadIdx.y;
int j= blockIdx.x * blockDim.x + threadIdx.x;
double A = 1;
double B = 3;
int Max_Itr = 1000;
double delta_t = 0.0025;
double Du = 5 * powf(10, -5);
double Dv = 5 * powf(10, -6);
double h = 1.0 / (M - 1);
double s1 = (Du * delta_t) / powf(h, 2);
double s2 = (Dv * delta_t) / powf(h, 2);
for (int k = 1; k < Max_Itr; k++) {
u[i][j] = ((1 - (4 * s1))
* u[i][j]) + (s1 * (u[i + 1][j] + u[i - 1][j] + u[i][j + 1] + u[i][j - 1])) +
(A * delta_t) + (delta_t * pow(u[i][j], 2) * v[i][j]) - (delta_t * (B + 1) * u[i][j]);
v[i][j] = ((1 - (4 * s2))
* v[i][j]) + (s2 * (v[i + 1][j] + v[i - 1][j] + v[i][j + 1] + v[i][j - 1])) + (B * delta_t * u[i][j])
- (delta_t * pow(u[i][j], 2) * v[i][j]);
__syncthreads();
}
}
int main() {
double** u=new double* [M];
double** v=new double* [M];
for (int i=0; i<M; i++){
u[i]=new double [N];
v[i]=new double [N];
}
dim3 blocks(32,32);
dim3 grids(M/32 +1, N/32 + 1);
for (int j = 0; j < M; j++) {
for (int i = 0; i < N;i++) {
u[i][j]=0.02;
v[i][j]=0.02;
}
}
double **u_d, **v_d;
int d_size = N * M * sizeof(double);
cudaMalloc(&u_d, d_size);
cudaMalloc(&v_d, d_size);
cudaMemcpy(u_d, u, d_size, cudaMemcpyHostToDevice);
cudaMemcpy(v_d, v, d_size, cudaMemcpyHostToDevice);
my_kernel<<<grids, blocks>>> (v_d,u_d);
cudaDeviceSynchronize();
cudaMemcpy(v, v_d, d_size, cudaMemcpyDeviceToHost);
cudaMemcpy(u, u_d, d_size, cudaMemcpyDeviceToHost);
cout<<"u: "<<u[512][512]<<" v: "<<v[512][512]<<endl;
return 0;
}
What I expect from the second version is :
u: 0.2815 v: 1.7581