I'm trying to get the sentiments for comments with the help of hugging face sentiment analysis pretrained model. It's returning error like Token indices sequence length is longer than the specified maximum sequence length for this model (651 > 512)
with Hugging face sentiment classifier.
Below I'm attaching the code please look at it
from transformers import AutoTokenizer, AutoModelForSequenceClassification, pipeline
import transformers
import pandas as pd
model = AutoModelForSequenceClassification.from_pretrained('/content/drive/MyDrive/Huggingface-Sentiment-Pipeline')
token = AutoTokenizer.from_pretrained('/content/drive/MyDrive/Huggingface-Sentiment-Pipeline')
classifier = pipeline(task='sentiment-analysis', model=model, tokenizer=token)
data = pd.read_csv('/content/drive/MyDrive/DisneylandReviews.csv', encoding='latin-1')
data.head()
Output is
Review
0 If you've ever been to Disneyland anywhere you...
1 Its been a while since d last time we visit HK...
2 Thanks God it wasn t too hot or too humid wh...
3 HK Disneyland is a great compact park. Unfortu...
4 the location is not in the city, took around 1...
Followed by
classifier("My name is mark")
Output is
[{'label': 'POSITIVE', 'score': 0.9953688383102417}]
Followed by code
basic_sentiment = [i['label'] for i in value if 'label' in i]
basic_sentiment
Output is
['POSITIVE']
Appending the total rows to empty list
text = []
for index, row in data.iterrows():
text.append(row['Review'])
I'm trying to get the sentiment for all the rows
sent = []
for i in range(len(data)):
sentiment = classifier(data.iloc[i,0])
sent.append(sentiment)
The error is :
Token indices sequence length is longer than the specified maximum sequence length for this model (651 > 512). Running this sequence through the model will result in indexing errors
---------------------------------------------------------------------------
IndexError Traceback (most recent call last)
<ipython-input-19-4bb136563e7c> in <module>()
2
3 for i in range(len(data)):
----> 4 sentiment = classifier(data.iloc[i,0])
5 sent.append(sentiment)
11 frames
/usr/local/lib/python3.7/dist-packages/torch/nn/functional.py in embedding(input, weight, padding_idx, max_norm, norm_type, scale_grad_by_freq, sparse)
1914 # remove once script supports set_grad_enabled
1915 _no_grad_embedding_renorm_(weight, input, max_norm, norm_type)
-> 1916 return torch.embedding(weight, input, padding_idx, scale_grad_by_freq, sparse)
1917
1918
IndexError: index out of range in self