I would like to do a "filldown" type operation on a dataframe in order to remove nulls and make sure the last row is a kind of summary row, containing the last known values for each column based on the timestamp
, grouped by the itemId
. As I'm using Azure Synapse Notebooks the language can be Scala, Pyspark, SparkSQL or even c#. However the problem here is that the real solution has up to millions of rows and hundreds of columns, so I need a dynamic solution that can take advantage of Spark. We can provision a big cluster to how to make sure we take good advantage of it?
Sample data:
// Assign sample data to dataframe
val df = Seq(
( 1, "10/01/2021", 1, "abc", null ),
( 2, "11/01/2021", 1, null, "bbb" ),
( 3, "12/01/2021", 1, "ccc", null ),
( 4, "13/01/2021", 1, null, "ddd" ),
( 5, "10/01/2021", 2, "eee", "fff" ),
( 6, "11/01/2021", 2, null, null ),
( 7, "12/01/2021", 2, null, null )
).
toDF("eventId", "timestamp", "itemId", "attrib1", "attrib2")
df.show
Expected results with rows 4 and 7 as summary rows:
+-------+----------+------+-------+-------+
|eventId| timestamp|itemId|attrib1|attrib2|
+-------+----------+------+-------+-------+
| 1|10/01/2021| 1| abc| null|
| 2|11/01/2021| 1| abc| bbb|
| 3|12/01/2021| 1| ccc| bbb|
| 4|13/01/2021| 1| ccc| ddd|
| 5|10/01/2021| 2| eee| fff|
| 6|11/01/2021| 2| eee| fff|
| 7|12/01/2021| 2| eee| fff|
+-------+----------+------+-------+-------+
I have reviewed this option but had trouble adapting it for my use case.
Spark / Scala: forward fill with last observation
I have a kind of working SparkSQL solution but it will be very verbose for the high volume of columns, hoping for something easier to maintain:
%%sql
WITH cte (
SELECT
eventId,
itemId,
ROW_NUMBER() OVER( PARTITION BY itemId ORDER BY timestamp ) AS rn,
attrib1,
attrib2
FROM df
)
SELECT
eventId,
itemId,
CASE rn WHEN 1 THEN attrib1
ELSE COALESCE( attrib1, LAST_VALUE(attrib1, true) OVER( PARTITION BY itemId ) )
END AS attrib1_xlast,
CASE rn WHEN 1 THEN attrib2
ELSE COALESCE( attrib2, LAST_VALUE(attrib2, true) OVER( PARTITION BY itemId ) )
END AS attrib2_xlast
FROM cte
ORDER BY eventId