I'm trying to train a named entity recognition model with Flair Framework (https://github.com/flairNLP/flair), with this embedding: TransformerWordEmbeddings('emilyalsentzer/Bio_ClinicalBERT')
. However, it always failed with OverflowError: int too big to convert
. This is also happening in some other transformer word embedding such as XLNet
. However, BERT
and RoBERTa
works fine.
Here is the full traceback of the error:
2021-04-15 09:34:48,106 ----------------------------------------------------------------------------------------------------
2021-04-15 09:34:48,106 Corpus: "Corpus: 778 train + 259 dev + 260 test sentences"
2021-04-15 09:34:48,106 ----------------------------------------------------------------------------------------------------
2021-04-15 09:34:48,106 Parameters:
2021-04-15 09:34:48,106 - learning_rate: "0.1"
2021-04-15 09:34:48,106 - mini_batch_size: "32"
2021-04-15 09:34:48,106 - patience: "3"
2021-04-15 09:34:48,106 - anneal_factor: "0.5"
2021-04-15 09:34:48,106 - max_epochs: "200"
2021-04-15 09:34:48,106 - shuffle: "True"
2021-04-15 09:34:48,106 - train_with_dev: "False"
2021-04-15 09:34:48,106 - batch_growth_annealing: "False"
2021-04-15 09:34:48,107 ----------------------------------------------------------------------------------------------------
2021-04-15 09:34:48,107 Model training base path: "/home/xxx/data/xxx-clinical-bert"
2021-04-15 09:34:48,107 ----------------------------------------------------------------------------------------------------
2021-04-15 09:34:48,107 Device: cuda:0
2021-04-15 09:34:48,107 ----------------------------------------------------------------------------------------------------
2021-04-15 09:34:48,107 Embeddings storage mode: gpu
2021-04-15 09:34:48,116 ----------------------------------------------------------------------------------------------------
Traceback (most recent call last):
File "train_medical_2.py", line 144, in <module>
train_ner(d + '-base-ent',corpus_base)
File "train_medical_2.py", line 136, in train_ner
max_epochs=200)
File "/home/d111199102201607101/flair/lib/python3.6/site-packages/flair/trainers/trainer.py", line 381, in train
loss = self.model.forward_loss(batch_step)
File "/home/d111199102201607101/flair/lib/python3.6/site-packages/flair/models/sequence_tagger_model.py", line 637, in forward_loss
features = self.forward(data_points)
File "/home/d111199102201607101/flair/lib/python3.6/site-packages/flair/models/sequence_tagger_model.py", line 642, in forward
self.embeddings.embed(sentences)
File "/home/d111199102201607101/flair/lib/python3.6/site-packages/flair/embeddings/token.py", line 81, in embed
embedding.embed(sentences)
File "/home/d111199102201607101/flair/lib/python3.6/site-packages/flair/embeddings/base.py", line 60, in embed
self._add_embeddings_internal(sentences)
File "/home/d111199102201607101/flair/lib/python3.6/site-packages/flair/embeddings/token.py", line 923, in _add_embeddings_internal
self._add_embeddings_to_sentence(sentence)
File "/home/d111199102201607101/flair/lib/python3.6/site-packages/flair/embeddings/token.py", line 999, in _add_embeddings_to_sentence
truncation=True,
File "/home/d111199102201607101/flair/lib/python3.6/site-packages/transformers/tokenization_utils_base.py", line 2438, in encode_plus
**kwargs,
File "/home/d111199102201607101/flair/lib/python3.6/site-packages/transformers/tokenization_utils_fast.py", line 472, in _encode_plus
**kwargs,
File "/home/d111199102201607101/flair/lib/python3.6/site-packages/transformers/tokenization_utils_fast.py", line 379, in _batch_encode_plus
pad_to_multiple_of=pad_to_multiple_of,
File "/home/d111199102201607101/flair/lib/python3.6/site-packages/transformers/tokenization_utils_fast.py", line 330, in set_truncation_and_padding
self._tokenizer.enable_truncation(max_length, stride=stride, strategy=truncation_strategy.value)
OverflowError: int too big to convert
I have tried to change the embedding_storage_mode
, hidden_size
, and mini_batch_size
. None of these gave me the fix to the issue.
Does anyone have the same issue? Is there any way to resolve this?
Thanks