I am trying to run a CNN where the input images have three channels (rgb) and the label (target) images are grayscale images (1 channel). The input and label images are in float32 and tif format.
I got the list of image and label tile pairs as below:
def get_train_test_lists(imdir, lbldir):
imgs = glob.glob(imdir+"/*.tif")
dset_list = []
for img in imgs:
filename_split = os.path.splitext(img)
filename_zero, fileext = filename_split
basename = os.path.basename(filename_zero)
dset_list.append(basename)
x_filenames = []
y_filenames = []
for img_id in dset_list:
x_filenames.append(os.path.join(imdir, "{}.tif".format(img_id)))
y_filenames.append(os.path.join(lbldir, "{}.tif".format(img_id)))
print("number of images: ", len(dset_list))
return dset_list, x_filenames, y_filenames
train_list, x_train_filenames, y_train_filenames = get_train_test_lists(img_dir, label_dir)
test_list, x_test_filenames, y_test_filenames = get_train_test_lists(test_img_dir, test_label_dir)
from sklearn.model_selection import train_test_split
x_train_filenames, x_val_filenames, y_train_filenames, y_val_filenames =
train_test_split(x_train_filenames, y_train_filenames, test_size=0.1, random_state=42)
num_train_examples = len(x_train_filenames)
num_val_examples = len(x_val_filenames)
num_test_examples = len(x_test_filenames)
In order to read the tiles into tensor, firstly I defined the image dimensions and batch size:
img_shape = (128, 128, 3)
batch_size = 2
I noticed that there is no decoder in tensorflow for tif image based on this link. tfio.experimental.image.decode_tiff
can be used but it decodes to unit8 tensor.
here is a sample code for png images:
def _process_pathnames(fname, label_path):
# We map this function onto each pathname pair
img_str = tf.io.read_file(fname)
img = tf.image.decode_png(img_str, channels=3)
label_img_str = tf.io.read_file(label_path)
# These are png images so they return as (num_frames, h, w, c)
label_img = tf.image.decode_png(label_img_str, channels=1)
# The label image should have any values between 0 and 9, indicating pixel wise
# cropt type class or background (0). We take the first channel only.
label_img = label_img[:, :, 0]
label_img = tf.expand_dims(label_img, axis=-1)
return img, label_img
Is it possible to modify this code by tf.convert_to_tensor
or any other option to get float32 tensor from tif images? (I asked this question before, but I don't know how to integrate tf.convert_to_tensor
with the mentioned codes)