I am trying to write my own training loop for TF2/Keras
, following the official Keras walkthrough. The vanilla version works like a charm, but when I try to add the @tf.function
decorator to my training step, some memory leak grabs all my memory and I lose control of my machine, does anyone know what is going on?.
The important parts of the code look like this:
@tf.function
def train_step(x, y):
with tf.GradientTape() as tape:
logits = siamese_network(x, training=True)
loss_value = loss_fn(y, logits)
grads = tape.gradient(loss_value, siamese_network.trainable_weights)
optimizer.apply_gradients(zip(grads, siamese_network.trainable_weights))
train_acc_metric.update_state(y, logits)
return loss_value
@tf.function
def test_step(x, y):
val_logits = siamese_network(x, training=False)
val_acc_metric.update_state(y, val_logits)
val_prec_metric.update_state(y_batch_val, val_logits)
val_rec_metric.update_state(y_batch_val, val_logits)
for epoch in range(epochs):
step_time = 0
epoch_time = time.time()
print("Start of {} epoch".format(epoch))
for step, (x_batch_train, y_batch_train) in enumerate(train_ds):
if step > steps_epoch:
break
loss_value = train_step(x_batch_train, y_batch_train)
train_acc = train_acc_metric.result()
train_acc_metric.reset_states()
for val_step,(x_batch_val, y_batch_val) in enumerate(test_ds):
if val_step>validation_steps:
break
test_step(x_batch_val, y_batch_val)
val_acc = val_acc_metric.result()
val_prec = val_prec_metric.result()
val_rec = val_rec_metric.result()
val_acc_metric.reset_states()
val_prec_metric.reset_states()
val_rec_metric.reset_states()
If I comment on the @tf.function
lines, the memory leak doesn't occur, but the step time is 3 times slower. My guess is that somehow the graph is bean created again within each epoch or something like that, but I have no idea how to solve it.
This is the tutorial I am following: https://keras.io/guides/writing_a_training_loop_from_scratch/